File size: 5,648 Bytes
246b4eb 64bcb0f 246b4eb d2dbd7f 246b4eb d2dbd7f 246b4eb d2dbd7f 246b4eb d2dbd7f 246b4eb d2dbd7f 246b4eb d2dbd7f 64bcb0f 246b4eb d2dbd7f 246b4eb 64bcb0f 246b4eb 64bcb0f 246b4eb d2dbd7f 246b4eb d2dbd7f 246b4eb d2dbd7f 246b4eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import os, llava, argparse
import numpy as np
from mmengine import load, dump
from tqdm import tqdm
from collections import defaultdict
PROMPT_TEMPLATES = {
"instruction": "Evaluate if this video follows the instruction: '{instruction}'. Use the following scoring criteria:\n\n- 0: The video does not follow the instruction at all.\n- 1: The video includes the correct object but performs the wrong action, or vice versa.\n- 2: The video follows the instruction and shows a tendency toward the intended action but does not fully achieve the goal.\n- 3: The video follows the instruction precisely and successfully achieves the intended goal.\n\nLet's analyze step-by-step and conclude with 'Score: [score]'.",
"physical_laws": 'Watch the video and determine if it shows any \'{physical_laws}\' Let\'s think step-by-step and conclude with "Yes" or "No".',
"commonsense": 'Does the video exhibit \'{commonsense}\'? Let\'s think step-by-step and conclude with "Yes" or "No".',
}
QUESTION_POOL = {
"instruction": None,
"physical_laws": [
"Violation of Newton's Law: Objects move without any external force.",
"Violation of the Law of Conservation of Mass or Solid Constitutive Law: Objects deform or distort irregularly.",
"Violation of Fluid Constitutive Law: Liquids flow in an unnatural or irregular manner.",
"Violation of Non-physical Penetration: Objects unnaturally pass through each other.",
"Violation of Gravity: Objects behave inconsistently with gravity, such as floating in the air.",
],
"commonsense": [
"Poor Aesthetics: Visually unappealing or low-quality content.",
"Temporal Inconsistency: Noticeable flickering, choppy motion, or abrupt appearance/disappearance of irrelevant objects.",
],
}
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Script for evaluating the WorldModelBenchmark.")
parser.add_argument(
"--judge",
type=str,
help="Path to judge model checkpoint.",
)
parser.add_argument(
"--video_dir",
type=str,
help="Path to the generated video directory.",
)
parser.add_argument(
"--save_name",
type=str,
help="Path to save evaluation results.",
)
parser.add_argument("--cot", action="store_true", help="Enable or disable Chain-of-Thought output.")
args = parser.parse_args()
validation_set = load("./worldmodelbench.json")
if args.cot:
args.save_name += "_cot"
results = None
if os.path.exists(args.save_name):
results = load(args.save_name)
try:
preds = results["preds"]
accs = results["accs"]
except:
raise "Expected keys are not found in the results."
else:
model = llava.load(args.judge)
preds = dict()
accs = defaultdict(list)
for vid, v_i in tqdm(enumerate(validation_set), total=len(validation_set)):
## Load video
video_name = v_i["first_frame"].split("/")[-1].split(".")[0]
video = os.path.join(args.video_dir, video_name + ".mp4")
if not os.path.exists(video):
continue
video = llava.Video(video)
## Traverse criterions
for k in ["instruction", "physical_laws", "commonsense"]:
preds_i = []
prompt_template = PROMPT_TEMPLATES[k]
qs = QUESTION_POOL[k]
if qs is not None:
accs_i = []
for q in qs:
if k == "physical_laws":
text_prompt = prompt_template.format(physical_laws=q.lower())
else:
text_prompt = prompt_template.format(commonsense=q.lower())
if not args.cot:
text_prompt = text_prompt.replace(
"Let's think step-by-step and conclude with", "Answer with"
).replace("Let's analyze step-by-step and conclude with", "Answer with")
pred = model.generate_content([video, text_prompt])
preds_i.append(pred)
## Always ask for violations, so a "No" is preferred!
accs_i.append("no" in pred.lower())
accs[k].append(np.mean(accs_i))
else:
text_prompt = prompt_template.format(instruction=v_i["text_instruction"])
if not args.cot:
text_prompt = text_prompt.replace(
"Let's think step-by-step and conclude with", "Answer with"
).replace("Let's analyze step-by-step and conclude with", "Answer with")
pred = model.generate_content([video, text_prompt])
preds_i.append(pred)
try:
score = float(pred.split(":")[-1].strip(" ."))
except:
score = 0
accs[k].append(score / 3)
if video_name not in preds:
preds[video_name] = dict()
preds[video_name][k] = preds_i
## Print results
for k, v in accs.items():
if isinstance(v, list):
print(f"{k} accuracy: {np.mean(v) * 100}%.")
else:
print(f"{k} accuracy: {v}%.")
## Save results
if results is None:
results = {"preds": preds, "accs": accs}
dump(results, f"./{args.save_name}.json", indent=4)
|