File size: 5,648 Bytes
246b4eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64bcb0f
246b4eb
 
 
 
 
 
 
 
 
 
 
 
 
d2dbd7f
246b4eb
 
 
 
d2dbd7f
246b4eb
 
 
 
 
 
 
 
d2dbd7f
246b4eb
d2dbd7f
 
 
 
 
 
 
246b4eb
 
 
 
 
 
d2dbd7f
246b4eb
d2dbd7f
64bcb0f
 
246b4eb
d2dbd7f
246b4eb
 
 
 
 
 
 
 
64bcb0f
246b4eb
64bcb0f
246b4eb
 
 
 
 
 
d2dbd7f
246b4eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2dbd7f
246b4eb
 
d2dbd7f
246b4eb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os, llava, argparse
import numpy as np
from mmengine import load, dump
from tqdm import tqdm
from collections import defaultdict


PROMPT_TEMPLATES = {
    "instruction": "Evaluate if this video follows the instruction: '{instruction}'. Use the following scoring criteria:\n\n- 0: The video does not follow the instruction at all.\n- 1: The video includes the correct object but performs the wrong action, or vice versa.\n- 2: The video follows the instruction and shows a tendency toward the intended action but does not fully achieve the goal.\n- 3: The video follows the instruction precisely and successfully achieves the intended goal.\n\nLet's analyze step-by-step and conclude with 'Score: [score]'.",
    "physical_laws": 'Watch the video and determine if it shows any \'{physical_laws}\' Let\'s think step-by-step and conclude with "Yes" or "No".',
    "commonsense": 'Does the video exhibit \'{commonsense}\'? Let\'s think step-by-step and conclude with "Yes" or "No".',
}

QUESTION_POOL = {
    "instruction": None,
    "physical_laws": [
        "Violation of Newton's Law: Objects move without any external force.",
        "Violation of the Law of Conservation of Mass or Solid Constitutive Law: Objects deform or distort irregularly.",
        "Violation of Fluid Constitutive Law: Liquids flow in an unnatural or irregular manner.",
        "Violation of Non-physical Penetration: Objects unnaturally pass through each other.",
        "Violation of Gravity: Objects behave inconsistently with gravity, such as floating in the air.",
    ],
    "commonsense": [
        "Poor Aesthetics: Visually unappealing or low-quality content.",
        "Temporal Inconsistency: Noticeable flickering, choppy motion, or abrupt appearance/disappearance of irrelevant objects.",
    ],
}

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Script for evaluating the WorldModelBenchmark.")
    parser.add_argument(
        "--judge",
        type=str,
        help="Path to judge model checkpoint.",
    )
    parser.add_argument(
        "--video_dir",
        type=str,
        help="Path to the generated video directory.",
    )
    parser.add_argument(
        "--save_name",
        type=str,
        help="Path to save evaluation results.",
    )
    parser.add_argument("--cot", action="store_true", help="Enable or disable Chain-of-Thought output.")
    args = parser.parse_args()

    validation_set = load("./worldmodelbench.json")
    if args.cot:
        args.save_name += "_cot"
    results = None
    if os.path.exists(args.save_name):
        results = load(args.save_name)
        try:
            preds = results["preds"]
            accs = results["accs"]
        except:
            raise "Expected keys are not found in the results."
    else:
        model = llava.load(args.judge)

        preds = dict()
        accs = defaultdict(list)
        for vid, v_i in tqdm(enumerate(validation_set), total=len(validation_set)):
            ## Load video
            video_name = v_i["first_frame"].split("/")[-1].split(".")[0]
            video = os.path.join(args.video_dir, video_name + ".mp4")
            if not os.path.exists(video):
                continue
            video = llava.Video(video)
            ## Traverse criterions
            for k in ["instruction", "physical_laws", "commonsense"]:
                preds_i = []
                prompt_template = PROMPT_TEMPLATES[k]
                qs = QUESTION_POOL[k]
                if qs is not None:
                    accs_i = []
                    for q in qs:
                        if k == "physical_laws":
                            text_prompt = prompt_template.format(physical_laws=q.lower())
                        else:
                            text_prompt = prompt_template.format(commonsense=q.lower())
                        if not args.cot:
                            text_prompt = text_prompt.replace(
                                "Let's think step-by-step and conclude with", "Answer with"
                            ).replace("Let's analyze step-by-step and conclude with", "Answer with")
                        pred = model.generate_content([video, text_prompt])
                        preds_i.append(pred)
                        ## Always ask for violations, so a "No" is preferred!
                        accs_i.append("no" in pred.lower())
                    accs[k].append(np.mean(accs_i))
                else:
                    text_prompt = prompt_template.format(instruction=v_i["text_instruction"])
                    if not args.cot:
                        text_prompt = text_prompt.replace(
                            "Let's think step-by-step and conclude with", "Answer with"
                        ).replace("Let's analyze step-by-step and conclude with", "Answer with")
                    pred = model.generate_content([video, text_prompt])
                    preds_i.append(pred)
                    try:
                        score = float(pred.split(":")[-1].strip(" ."))
                    except:
                        score = 0
                    accs[k].append(score / 3)
                if video_name not in preds:
                    preds[video_name] = dict()
                preds[video_name][k] = preds_i
    ## Print results
    for k, v in accs.items():
        if isinstance(v, list):
            print(f"{k} accuracy: {np.mean(v) * 100}%.")
        else:
            print(f"{k} accuracy: {v}%.")
    ## Save results
    if results is None:
        results = {"preds": preds, "accs": accs}
        dump(results, f"./{args.save_name}.json", indent=4)