File size: 6,711 Bytes
c13f953
 
9f347e3
 
af6a1f1
 
 
 
4f6e16e
 
 
 
 
 
9f347e3
 
34e1208
 
4f6e16e
 
34e1208
4f6e16e
 
34e1208
4f6e16e
34e1208
 
9f347e3
 
 
 
 
 
 
4f6e16e
b34ae4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
279345f
b34ae4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
---
license: apache-2.0
size_categories:
- n<1K
task_categories:
- image-segmentation
task_ids:
- semantic-segmentation
dataset_info:
  features:
  - name: image
    dtype: image
  - name: label
    dtype: image
  - name: classes_on_image
    sequence: int64
  - name: id
    dtype: int64
  splits:
  - name: train
    num_bytes: 1140887299.125
    num_examples: 4983
  - name: validation
    num_bytes: 115180784.125
    num_examples: 2135
  download_size: 1254703923
  dataset_size: 1256068083.25
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
---

# Dataset Card for FoodSeg103

## Table of Contents
- [Dataset Card for FoodSeg103](#dataset-card-for-foodseg103)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Dataset Structure](#dataset-structure)
    - [Data categories](#data-categories)
    - [Data Splits](#data-splits)
  - [Dataset Creation](#dataset-creation)
    - [Curation Rationale](#curation-rationale)
    - [Source Data](#source-data)
      - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
    - [Annotations](#annotations)
      - [Annotation process](#annotation-process)
      - [Refinement process](#refinement-process)
      - [Who are the annotators?](#who-are-the-annotators)
  - [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** [Dataset homepage](https://xiongweiwu.github.io/foodseg103.html)
- **Repository:** [FoodSeg103-Benchmark-v1](https://github.com/LARC-CMU-SMU/FoodSeg103-Benchmark-v1)
- **Paper:** [A Large-Scale Benchmark for Food Image Segmentation](https://arxiv.org/pdf/2105.05409.pdf)
- **Point of Contact:** [Not Defined]

### Dataset Summary

FoodSeg103 is a large-scale benchmark for food image segmentation. It contains 103 food categories and 7118 images with ingredient level pixel-wise annotations. The dataset is a curated sample from [Recipe1M](https://github.com/facebookresearch/inversecooking) and annotated and refined by human annotators. The dataset is split into 2 subsets: training set, validation set. The training set contains 4983 images and the validation set contains 2135 images.

### Supported Tasks and Leaderboards

No leaderboard is available for this dataset at the moment.

## Dataset Structure

### Data categories

| id | ingridient |
| --- | ---- |
| 0 | background |
| 1 | candy |
| 2 | egg tart |
| 3 | french fries |
| 4 | chocolate |
| 5 | biscuit |
| 6 | popcorn |
| 7 | pudding |
| 8 | ice cream |
| 9 | cheese butter |
| 10 | cake |
| 11 | wine |
| 12 | milkshake |
| 13 | coffee |
| 14 | juice |
| 15 | milk |
| 16 | tea |
| 17 | almond |
| 18 | red beans |
| 19 | cashew |
| 20 | dried cranberries |
| 21 | soy |
| 22 | walnut |
| 23 | peanut |
| 24 | egg |
| 25 | apple |
| 26 | date |
| 27 | apricot |
| 28 | avocado |
| 29 | banana |
| 30 | strawberry |
| 31 | cherry |
| 32 | blueberry |
| 33 | raspberry |
| 34 | mango |
| 35 | olives |
| 36 | peach |
| 37 | lemon |
| 38 | pear |
| 39 | fig |
| 40 | pineapple |
| 41 | grape |
| 42 | kiwi |
| 43 | melon |
| 44 | orange |
| 45 | watermelon |
| 46 | steak |
| 47 | pork |
| 48 | chicken duck |
| 49 | sausage |
| 50 | fried meat |
| 51 | lamb |
| 52 | sauce |
| 53 | crab |
| 54 | fish |
| 55 | shellfish |
| 56 | shrimp |
| 57 | soup |
| 58 | bread |
| 59 | corn |
| 60 | hamburg |
| 61 | pizza |
| 62 |  hanamaki baozi |
| 63 | wonton dumplings |
| 64 | pasta |
| 65 | noodles |
| 66 | rice |
| 67 | pie |
| 68 | tofu |
| 69 | eggplant |
| 70 | potato |
| 71 | garlic |
| 72 | cauliflower |
| 73 | tomato |
| 74 | kelp |
| 75 | seaweed |
| 76 | spring onion |
| 77 | rape |
| 78 | ginger |
| 79 | okra |
| 80 | lettuce |
| 81 | pumpkin |
| 82 | cucumber |
| 83 | white radish |
| 84 | carrot |
| 85 | asparagus |
| 86 | bamboo shoots |
| 87 | broccoli |
| 88 | celery stick |
| 89 | cilantro mint |
| 90 | snow peas |
| 91 |  cabbage |
| 92 | bean sprouts |
| 93 | onion |
| 94 | pepper |
| 95 | green beans |
| 96 | French beans |
| 97 | king oyster mushroom |
| 98 | shiitake |
| 99 | enoki mushroom |
| 100 | oyster mushroom |
| 101 | white button mushroom |
| 102 | salad |
| 103 | other ingredients |

### Data Splits

This dataset only contains two splits. A training split and a validation split with 4983 and 2135 images respectively.

## Dataset Creation

### Curation Rationale

Select images from a large-scale recipe dataset and annotate them with pixel-wise segmentation masks.

### Source Data

The dataset is a curated sample from [Recipe1M](https://github.com/facebookresearch/inversecooking).

#### Initial Data Collection and Normalization

After selecting the source of the data two more steps were added before image selection.

1. Recipe1M contains 1.5k ingredient categoris, but only the top 124 categories were selected + a 'other' category (further became 103).
2. Images should contain between 2 and 16 ingredients.
3. Ingredients should be visible and easy to annotate.

Which then resulted in 7118 images.

### Annotations

#### Annotation process

Third party annotators were hired to annotate the images respecting the following guidelines:

1. Tag ingredients with appropriate categories.
2. Draw pixel-wise masks for each ingredient.
3. Ignore tiny regions (even if contains ingredients) with area covering less than 5% of the image.

#### Refinement process

The refinement process implemented the following steps:

1. Correct mislabelled ingredients.
2. Deleting unpopular categories that are assigned to less than 5 images (resulting in 103 categories in the final dataset).
3. Merging visually similar ingredient categories (e.g. orange and citrus)

#### Who are the annotators?

A third party company that was not mentioned in the paper.

## Additional Information

### Dataset Curators

Authors of the paper [A Large-Scale Benchmark for Food Image Segmentation](https://arxiv.org/pdf/2105.05409.pdf).

### Licensing Information

[Apache 2.0 license.](https://github.com/LARC-CMU-SMU/FoodSeg103-Benchmark-v1/blob/main/LICENSE)

### Citation Information

```bibtex
@inproceedings{wu2021foodseg,
	title={A Large-Scale Benchmark for Food Image Segmentation},
	author={Wu, Xiongwei and Fu, Xin and Liu, Ying and Lim, Ee-Peng and Hoi, Steven CH and Sun, Qianru},
	booktitle={Proceedings of ACM international conference on Multimedia},
	year={2021}
}
```