File size: 3,834 Bytes
afa3e32 f5b208f 2da346e afa3e32 3861838 afa3e32 3861838 afa3e32 6db1ebe afa3e32 a264ca5 bfef8de 5bc63c4 bfef8de 3f11aba bfef8de 662e94c bfef8de afa3e32 bfef8de 4d02ed1 bfef8de 4d02ed1 bfef8de 4d02ed1 bfef8de afa3e32 bfef8de ce0d7c4 6083c73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
from collections import defaultdict
import os
import json
import csv
import datasets
_BASE_DATA_DIR = "data/"
_AUDIO_ARCHIVE_PATH = _BASE_DATA_DIR + "{split}/{split}_dataset.tar.gz"
_METADATA_PATH = _BASE_DATA_DIR + "{split}.tsv"
class Hyvoxpopuli(datasets.GeneratorBasedBuilder):
"""The HyVoxPopuli dataset."""
def _info(self):
features = datasets.Features(
{
"audio_id": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"raw_text": datasets.Value("string"),
"normalized_text": datasets.Value("string"),
"gender": datasets.Value("string"), # TODO: ClassVar?
"speaker_id": datasets.Value("string"),
"is_gold_transcript": datasets.Value("bool"),
"accent": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
features=features
)
def _split_generators(self, dl_manager):
splits = ["train", "dev", "test"]
audio_urls = defaultdict(dict)
for split in splits:
audio_urls[split] = [_AUDIO_ARCHIVE_PATH.format(split=split)]
meta_urls = defaultdict(dict)
for split in splits:
meta_urls[split] = _METADATA_PATH.format(split=split)
# dl_manager.download_config.num_proc = len(urls)
meta_paths = dl_manager.download_and_extract(meta_urls)
audio_paths = dl_manager.download(audio_urls)
local_extracted_audio_paths = (
dl_manager.extract(audio_paths)
)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["train"]],
"local_extracted_archives_paths": local_extracted_audio_paths["train"],
"metadata_paths": meta_paths["train"],
}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["dev"]],
"local_extracted_archives_paths": local_extracted_audio_paths["dev"],
"metadata_paths": meta_paths["dev"],
}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["test"]],
"local_extracted_archives_paths": local_extracted_audio_paths["test"],
"metadata_paths": meta_paths["test"],
}
),
]
def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths):
features = ["raw_text", "normalized_text", "speaker_id", "gender", "is_gold_transcript", "accent"]
meta_path = metadata_paths
with open(meta_path) as f:
metadata = {x["id"]: x for x in csv.DictReader(f, delimiter="\t")}
for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths):
for audio_filename, audio_file in audio_archive:
audio_id = audio_filename.split(os.sep)[-1].split(".wav")[0]
path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename
yield audio_id, {
"audio_id": audio_id,
**{feature: metadata[audio_id][feature] for feature in features},
"audio": {"path": path, "bytes": audio_file.read()},
} |