File size: 3,834 Bytes
afa3e32
 
 
 
 
 
 
 
 
 
 
 
 
f5b208f
2da346e
afa3e32
 
 
 
3861838
 
afa3e32
 
3861838
 
 
 
afa3e32
 
 
6db1ebe
afa3e32
 
a264ca5
bfef8de
5bc63c4
bfef8de
 
 
 
 
 
 
3f11aba
bfef8de
 
 
 
 
 
 
662e94c
bfef8de
 
afa3e32
bfef8de
 
 
4d02ed1
bfef8de
 
 
 
 
 
 
4d02ed1
bfef8de
 
 
 
 
 
 
4d02ed1
bfef8de
 
 
 
afa3e32
 
bfef8de
ce0d7c4
6083c73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from collections import defaultdict
import os
import json
import csv

import datasets

_BASE_DATA_DIR = "data/"

_AUDIO_ARCHIVE_PATH = _BASE_DATA_DIR + "{split}/{split}_dataset.tar.gz"

_METADATA_PATH = _BASE_DATA_DIR + "{split}.tsv"

class Hyvoxpopuli(datasets.GeneratorBasedBuilder):
    """The HyVoxPopuli dataset."""

    def _info(self):
        features = datasets.Features(
            {
                "audio_id": datasets.Value("string"),
                "audio": datasets.Audio(sampling_rate=16_000),
                "raw_text": datasets.Value("string"),
                "normalized_text": datasets.Value("string"),
                "gender": datasets.Value("string"),  # TODO: ClassVar?
                "speaker_id": datasets.Value("string"),
                "is_gold_transcript": datasets.Value("bool"),
                "accent": datasets.Value("string"),
            }
        )
        return datasets.DatasetInfo(
            features=features
        )

    def _split_generators(self, dl_manager):

        splits = ["train", "dev", "test"]

        audio_urls = defaultdict(dict)
        for split in splits:
            audio_urls[split] = [_AUDIO_ARCHIVE_PATH.format(split=split)]

        meta_urls = defaultdict(dict)
        for split in splits:
            meta_urls[split] = _METADATA_PATH.format(split=split)

        # dl_manager.download_config.num_proc = len(urls)

        meta_paths = dl_manager.download_and_extract(meta_urls)
        audio_paths = dl_manager.download(audio_urls)

        local_extracted_audio_paths = (
            dl_manager.extract(audio_paths)
        )

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["train"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["train"],
                    "metadata_paths": meta_paths["train"],
                }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["dev"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["dev"],
                    "metadata_paths": meta_paths["dev"],
                }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["test"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["test"],
                    "metadata_paths": meta_paths["test"],
                }
            ),
        ]

    def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths):
        features = ["raw_text", "normalized_text", "speaker_id", "gender", "is_gold_transcript", "accent"]

        meta_path = metadata_paths
        with open(meta_path) as f:
            metadata = {x["id"]: x for x in csv.DictReader(f, delimiter="\t")}

        for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths):
            for audio_filename, audio_file in audio_archive:
                audio_id = audio_filename.split(os.sep)[-1].split(".wav")[0]
                path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename

                yield audio_id, {
                    "audio_id": audio_id,
                    **{feature: metadata[audio_id][feature] for feature in features},
                    "audio": {"path": path, "bytes": audio_file.read()},
                }