File size: 11,728 Bytes
b829cac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d3d6c2
b829cac
5d3d6c2
 
 
 
2cf777a
5d3d6c2
b829cac
 
2cf777a
 
 
b829cac
b42d32d
fe57806
b42d32d
1e1ce7c
 
 
 
 
 
 
 
 
 
b829cac
1e1ce7c
 
 
5211360
b829cac
 
 
 
 
 
 
 
 
 
 
ef362c7
 
b42d32d
2cf777a
ef362c7
 
2cf777a
 
 
 
25fec72
2cf777a
 
 
 
 
 
25fec72
2cf777a
 
 
 
 
 
25fec72
2cf777a
 
 
 
 
b42d32d
2cf777a
ef362c7
 
2cf777a
 
 
 
25fec72
2cf777a
 
 
 
 
 
25fec72
2cf777a
 
 
 
 
 
25fec72
2cf777a
 
 
 
b829cac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7b1831
b829cac
e7b1831
b829cac
e7b1831
b829cac
 
e7b1831
b829cac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfe15b4
 
 
b829cac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd71611
6f46fd2
cd71611
6f46fd2
cd71611
6f46fd2
 
 
 
 
 
cd71611
b829cac
 
b42d32d
2cf777a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b42d32d
b829cac
 
 
 
 
 
 
 
8356d68
b829cac
 
 
 
 
8356d68
 
b829cac
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# pip install bs4 syntok

import os
import random

import datasets

import numpy as np
from bs4 import BeautifulSoup, ResultSet
from syntok.tokenizer import Tokenizer

tokenizer = Tokenizer()

_CITATION = """\
@report{Magnini2021, \
    author = {Bernardo Magnini and Begoña Altuna and Alberto Lavelli and Manuela Speranza \
    and Roberto Zanoli and Fondazione Bruno Kessler}, \
    keywords = {Clinical data,clinical enti-ties,corpus,multilingual,temporal information}, \
    title = {The E3C Project: \
    European Clinical Case Corpus El proyecto E3C: European Clinical Case Corpus}, \
    url = {https://uts.nlm.nih.gov/uts/umls/home}, \
    year = {2021}, \
}
"""

_DESCRIPTION = """\
E3C is a freely available multilingual corpus (English, French, Italian, Spanish, and Basque) \
of semantically annotated clinical narratives to allow for the linguistic analysis, benchmarking, \
and training of information extraction systems. It consists of two types of annotations: \
(i) clinical entities (e.g., pathologies), (ii) temporal information and factuality (e.g., events). \
Researchers can use the benchmark training and test splits of our corpus to develop and test \
their own models.
"""

_URL = "https://github.com/hltfbk/E3C-Corpus/archive/refs/tags/v2.0.0.zip"

_LANGUAGES = ["English","Spanish","Basque","French","Italian"]

class E3C(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name=f"{lang}_clinical", version="1.0.0", description=f"The {lang} subset of the E3C corpus") for lang in _LANGUAGES
    ]

    BUILDER_CONFIGS += [
        datasets.BuilderConfig(name=f"{lang}_temporal", version="1.0.0", description=f"The {lang} subset of the E3C corpus") for lang in _LANGUAGES
    ]    
    
    DEFAULT_CONFIG_NAME = "French_clinical"

    def _info(self):
        
        if self.config.name == "default":
            self.config.name = self.DEFAULT_CONFIG_NAME

        if self.config.name.find("clinical") != -1:
            names = ["O","B-CLINENTITY","I-CLINENTITY"]
        elif self.config.name.find("temporal") != -1:
            names = ["O", "B-EVENT", "B-ACTOR", "B-BODYPART", "B-TIMEX3", "B-RML", "I-EVENT", "I-ACTOR", "I-BODYPART", "I-TIMEX3", "I-RML"]
        
        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "text": datasets.Value("string"),
                "tokens": datasets.Sequence(datasets.Value("string")),
                "ner_tags": datasets.Sequence(
                    datasets.features.ClassLabel(
                        names=names,
                    ),
                ),
            }
        )
        
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            citation=_CITATION,
            supervised_keys=None,
        )

    def _split_generators(self, dl_manager):

        data_dir = dl_manager.download_and_extract(_URL)

        print(data_dir)

        if self.config.name.find("clinical") != -1:
            
            print("clinical")
            
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name.replace("_clinical",""), "layer2"),
                        "split": "train",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name.replace("_clinical",""), "layer2"),
                        "split": "validation",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name.replace("_clinical",""), "layer1"),
                        "split": "test",
                    },
                ),
            ]
            
        elif self.config.name.find("temporal") != -1:
            
            print("temporal")
            
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name.replace("_temporal",""), "layer1"),
                        "split": "train",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name.replace("_temporal",""), "layer1"),
                        "split": "validation",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name.replace("_temporal",""), "layer1"),
                        "split": "test",
                    },
                ),
            ]

    @staticmethod
    def get_annotations(entities: ResultSet, text: str) -> list:

        return [[
            int(entity.get("begin")),
            int(entity.get("end")),
            text[int(entity.get("begin")) : int(entity.get("end"))],
        ] for entity in entities]

    def get_clinical_annotations(self, entities: ResultSet, text: str) -> list:

        return [[
            int(entity.get("begin")),
            int(entity.get("end")),
            text[int(entity.get("begin")) : int(entity.get("end"))],
            entity.get("entityID"),
        ] for entity in entities]

    def get_parsed_data(self, filepath: str):

        for root, _, files in os.walk(filepath):
            
            for file in files:
            
                with open(f"{root}/{file}") as soup_file:
            
                    soup = BeautifulSoup(soup_file, "xml")
                    text = soup.find("cas:Sofa").get("sofaString")
            
                    yield {
                        "CLINENTITY": self.get_clinical_annotations(soup.find_all("custom:CLINENTITY"), text),
                        "EVENT": self.get_annotations(soup.find_all("custom:EVENT"), text),
                        "ACTOR": self.get_annotations(soup.find_all("custom:ACTOR"), text),
                        "BODYPART": self.get_annotations(soup.find_all("custom:BODYPART"), text),
                        "TIMEX3": self.get_annotations(soup.find_all("custom:TIMEX3"), text),
                        "RML": self.get_annotations(soup.find_all("custom:RML"), text),
                        "SENTENCE": self.get_annotations(soup.find_all("type4:Sentence"), text),
                        "TOKENS": self.get_annotations(soup.find_all("type4:Token"), text),
                    }

    def _generate_examples(self, filepath, split):

        all_res = []

        key = 0

        parsed_content = self.get_parsed_data(filepath)

        for content in parsed_content:

            for sentence in content["SENTENCE"]:

                tokens = [(
                    token.offset + sentence[0],
                    token.offset + sentence[0] + len(token.value),
                    token.value,
                ) for token in list(tokenizer.tokenize(sentence[-1]))]

                filtered_tokens = list(
                    filter(
                        lambda token: token[0] >= sentence[0] and token[1] <= sentence[1],
                        tokens,
                    )
                )

                tokens_offsets = [
                    [token[0] - sentence[0], token[1] - sentence[0]] for token in filtered_tokens
                ]

                clinical_labels = ["O"] * len(filtered_tokens)
                clinical_cuid = ["CUI_LESS"] * len(filtered_tokens)
                temporal_information_labels = ["O"] * len(filtered_tokens)

                for entity_type in ["CLINENTITY","EVENT","ACTOR","BODYPART","TIMEX3","RML"]:

                    if len(content[entity_type]) != 0:

                        for entities in list(content[entity_type]):

                            annotated_tokens = [
                                idx_token
                                for idx_token, token in enumerate(filtered_tokens)
                                if token[0] >= entities[0] and token[1] <= entities[1]
                            ]

                            for idx_token in annotated_tokens:

                                if entity_type == "CLINENTITY":
                                    if idx_token == annotated_tokens[0]:
                                        clinical_labels[idx_token] = f"B-{entity_type}"
                                    else:
                                        clinical_labels[idx_token] = f"I-{entity_type}"
                                    clinical_cuid[idx_token] = entities[-1]
                                else:
                                    if idx_token == annotated_tokens[0]:
                                        temporal_information_labels[idx_token] = f"B-{entity_type}"
                                    else:
                                        temporal_information_labels[idx_token] = f"I-{entity_type}"

                if self.config.name.find("clinical") != -1:
                    _labels = clinical_labels        
                elif self.config.name.find("temporal") != -1:
                    _labels = temporal_information_labels
                
                all_res.append({
                    "id": key,
                    "text": sentence[-1],
                    "tokens": list(map(lambda token: token[2], filtered_tokens)),
                    "ner_tags": _labels,
                })
                
                key += 1
        
        if self.config.name.find("clinical") != -1:
            
            if split != "test":
                
                ids = [r["id"] for r in all_res]
        
                random.seed(4)
                random.shuffle(ids)
                random.shuffle(ids)
                random.shuffle(ids)
                
                train, validation = np.split(ids, [int(len(ids)*0.8738)])
        
                if split == "train":
                    allowed_ids = list(train)
                elif split == "validation":
                    allowed_ids = list(validation)
                
                for r in all_res:
                    if r["id"] in allowed_ids:
                        yield r["id"], r
            else:
                
                for r in all_res:
                    yield r["id"], r
        
        elif self.config.name.find("temporal") != -1:
            
            ids = [r["id"] for r in all_res]
    
            random.seed(4)
            random.shuffle(ids)
            random.shuffle(ids)
            random.shuffle(ids)
            
            train, validation, test = np.split(ids, [int(len(ids)*0.70), int(len(ids)*0.80)])
    
            if split == "train":
                allowed_ids = list(train)
            elif split == "validation":
                allowed_ids = list(validation)
            elif split == "test":
                allowed_ids = list(test)
            
            for r in all_res:
                if r["id"] in allowed_ids:
                    yield r["id"], r