File size: 11,728 Bytes
b829cac 5d3d6c2 b829cac 5d3d6c2 2cf777a 5d3d6c2 b829cac 2cf777a b829cac b42d32d fe57806 b42d32d 1e1ce7c b829cac 1e1ce7c 5211360 b829cac ef362c7 b42d32d 2cf777a ef362c7 2cf777a 25fec72 2cf777a 25fec72 2cf777a 25fec72 2cf777a b42d32d 2cf777a ef362c7 2cf777a 25fec72 2cf777a 25fec72 2cf777a 25fec72 2cf777a b829cac e7b1831 b829cac e7b1831 b829cac e7b1831 b829cac e7b1831 b829cac dfe15b4 b829cac cd71611 6f46fd2 cd71611 6f46fd2 cd71611 6f46fd2 cd71611 b829cac b42d32d 2cf777a b42d32d b829cac 8356d68 b829cac 8356d68 b829cac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# pip install bs4 syntok
import os
import random
import datasets
import numpy as np
from bs4 import BeautifulSoup, ResultSet
from syntok.tokenizer import Tokenizer
tokenizer = Tokenizer()
_CITATION = """\
@report{Magnini2021, \
author = {Bernardo Magnini and Begoña Altuna and Alberto Lavelli and Manuela Speranza \
and Roberto Zanoli and Fondazione Bruno Kessler}, \
keywords = {Clinical data,clinical enti-ties,corpus,multilingual,temporal information}, \
title = {The E3C Project: \
European Clinical Case Corpus El proyecto E3C: European Clinical Case Corpus}, \
url = {https://uts.nlm.nih.gov/uts/umls/home}, \
year = {2021}, \
}
"""
_DESCRIPTION = """\
E3C is a freely available multilingual corpus (English, French, Italian, Spanish, and Basque) \
of semantically annotated clinical narratives to allow for the linguistic analysis, benchmarking, \
and training of information extraction systems. It consists of two types of annotations: \
(i) clinical entities (e.g., pathologies), (ii) temporal information and factuality (e.g., events). \
Researchers can use the benchmark training and test splits of our corpus to develop and test \
their own models.
"""
_URL = "https://github.com/hltfbk/E3C-Corpus/archive/refs/tags/v2.0.0.zip"
_LANGUAGES = ["English","Spanish","Basque","French","Italian"]
class E3C(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(name=f"{lang}_clinical", version="1.0.0", description=f"The {lang} subset of the E3C corpus") for lang in _LANGUAGES
]
BUILDER_CONFIGS += [
datasets.BuilderConfig(name=f"{lang}_temporal", version="1.0.0", description=f"The {lang} subset of the E3C corpus") for lang in _LANGUAGES
]
DEFAULT_CONFIG_NAME = "French_clinical"
def _info(self):
if self.config.name == "default":
self.config.name = self.DEFAULT_CONFIG_NAME
if self.config.name.find("clinical") != -1:
names = ["O","B-CLINENTITY","I-CLINENTITY"]
elif self.config.name.find("temporal") != -1:
names = ["O", "B-EVENT", "B-ACTOR", "B-BODYPART", "B-TIMEX3", "B-RML", "I-EVENT", "I-ACTOR", "I-BODYPART", "I-TIMEX3", "I-RML"]
features = datasets.Features(
{
"id": datasets.Value("string"),
"text": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=names,
),
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
citation=_CITATION,
supervised_keys=None,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
print(data_dir)
if self.config.name.find("clinical") != -1:
print("clinical")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name.replace("_clinical",""), "layer2"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name.replace("_clinical",""), "layer2"),
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name.replace("_clinical",""), "layer1"),
"split": "test",
},
),
]
elif self.config.name.find("temporal") != -1:
print("temporal")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name.replace("_temporal",""), "layer1"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name.replace("_temporal",""), "layer1"),
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name.replace("_temporal",""), "layer1"),
"split": "test",
},
),
]
@staticmethod
def get_annotations(entities: ResultSet, text: str) -> list:
return [[
int(entity.get("begin")),
int(entity.get("end")),
text[int(entity.get("begin")) : int(entity.get("end"))],
] for entity in entities]
def get_clinical_annotations(self, entities: ResultSet, text: str) -> list:
return [[
int(entity.get("begin")),
int(entity.get("end")),
text[int(entity.get("begin")) : int(entity.get("end"))],
entity.get("entityID"),
] for entity in entities]
def get_parsed_data(self, filepath: str):
for root, _, files in os.walk(filepath):
for file in files:
with open(f"{root}/{file}") as soup_file:
soup = BeautifulSoup(soup_file, "xml")
text = soup.find("cas:Sofa").get("sofaString")
yield {
"CLINENTITY": self.get_clinical_annotations(soup.find_all("custom:CLINENTITY"), text),
"EVENT": self.get_annotations(soup.find_all("custom:EVENT"), text),
"ACTOR": self.get_annotations(soup.find_all("custom:ACTOR"), text),
"BODYPART": self.get_annotations(soup.find_all("custom:BODYPART"), text),
"TIMEX3": self.get_annotations(soup.find_all("custom:TIMEX3"), text),
"RML": self.get_annotations(soup.find_all("custom:RML"), text),
"SENTENCE": self.get_annotations(soup.find_all("type4:Sentence"), text),
"TOKENS": self.get_annotations(soup.find_all("type4:Token"), text),
}
def _generate_examples(self, filepath, split):
all_res = []
key = 0
parsed_content = self.get_parsed_data(filepath)
for content in parsed_content:
for sentence in content["SENTENCE"]:
tokens = [(
token.offset + sentence[0],
token.offset + sentence[0] + len(token.value),
token.value,
) for token in list(tokenizer.tokenize(sentence[-1]))]
filtered_tokens = list(
filter(
lambda token: token[0] >= sentence[0] and token[1] <= sentence[1],
tokens,
)
)
tokens_offsets = [
[token[0] - sentence[0], token[1] - sentence[0]] for token in filtered_tokens
]
clinical_labels = ["O"] * len(filtered_tokens)
clinical_cuid = ["CUI_LESS"] * len(filtered_tokens)
temporal_information_labels = ["O"] * len(filtered_tokens)
for entity_type in ["CLINENTITY","EVENT","ACTOR","BODYPART","TIMEX3","RML"]:
if len(content[entity_type]) != 0:
for entities in list(content[entity_type]):
annotated_tokens = [
idx_token
for idx_token, token in enumerate(filtered_tokens)
if token[0] >= entities[0] and token[1] <= entities[1]
]
for idx_token in annotated_tokens:
if entity_type == "CLINENTITY":
if idx_token == annotated_tokens[0]:
clinical_labels[idx_token] = f"B-{entity_type}"
else:
clinical_labels[idx_token] = f"I-{entity_type}"
clinical_cuid[idx_token] = entities[-1]
else:
if idx_token == annotated_tokens[0]:
temporal_information_labels[idx_token] = f"B-{entity_type}"
else:
temporal_information_labels[idx_token] = f"I-{entity_type}"
if self.config.name.find("clinical") != -1:
_labels = clinical_labels
elif self.config.name.find("temporal") != -1:
_labels = temporal_information_labels
all_res.append({
"id": key,
"text": sentence[-1],
"tokens": list(map(lambda token: token[2], filtered_tokens)),
"ner_tags": _labels,
})
key += 1
if self.config.name.find("clinical") != -1:
if split != "test":
ids = [r["id"] for r in all_res]
random.seed(4)
random.shuffle(ids)
random.shuffle(ids)
random.shuffle(ids)
train, validation = np.split(ids, [int(len(ids)*0.8738)])
if split == "train":
allowed_ids = list(train)
elif split == "validation":
allowed_ids = list(validation)
for r in all_res:
if r["id"] in allowed_ids:
yield r["id"], r
else:
for r in all_res:
yield r["id"], r
elif self.config.name.find("temporal") != -1:
ids = [r["id"] for r in all_res]
random.seed(4)
random.shuffle(ids)
random.shuffle(ids)
random.shuffle(ids)
train, validation, test = np.split(ids, [int(len(ids)*0.70), int(len(ids)*0.80)])
if split == "train":
allowed_ids = list(train)
elif split == "validation":
allowed_ids = list(validation)
elif split == "test":
allowed_ids = list(test)
for r in all_res:
if r["id"] in allowed_ids:
yield r["id"], r
|