File size: 6,568 Bytes
41a857c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a91d107
41a857c
 
 
74c2992
41a857c
 
a91d107
41a857c
 
 
 
 
 
 
4946933
 
 
 
 
 
41a857c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a0aa6c
41a857c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4877edf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DIAMED"""

import os
import json
import math

import datasets

_DESCRIPTION = """\
DIAMED
"""

_HOMEPAGE = "DIAMED"

_LICENSE = "Apache License 2.0"

_URL = "https://huggingface.co/datasets/Dr-BERT/DiaMED/resolve/main/data.zip"

_CITATION = """\
DIAMED
"""

class DiaMed(datasets.GeneratorBasedBuilder):
    """DIAMED"""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name=f"default", version="1.0.0", description=f"DiaMED data"),
    ]
    
    DEFAULT_CONFIG_NAME = "default"

    def _info(self):

        features = datasets.Features(
            {
                "identifier": datasets.Value("string"),
                "title": datasets.Value("string"),
                "clinical_case": datasets.Value("string"),
                "topic": datasets.Value("string"),
                "keywords": datasets.Sequence(
                    datasets.Value("string"),
                ),
                "domains": datasets.Sequence(
                    datasets.Value("string"),
                ),
                "collected_at": datasets.Value("string"),
                "published_at": datasets.Value("string"),
                "source_url": datasets.Value("string"),
                "source_name": datasets.Value("string"),
                "license": datasets.Value("string"),
                "figures_urls": datasets.Sequence(
                    datasets.Value("string"),
                ),
                "figures_paths": datasets.Sequence(
                    datasets.Value("string"),
                ),
                "figures": datasets.Sequence(
                    datasets.Image(),
                ),
                "icd-10": datasets.features.ClassLabel(names=[
                    'A00-B99  Certain infectious and parasitic diseases',
                    'C00-D49  Neoplasms',
                    'D50-D89  Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism',
                    'E00-E89  Endocrine, nutritional and metabolic diseases',
                    'F01-F99  Mental, Behavioral and Neurodevelopmental disorders',
                    'G00-G99  Diseases of the nervous system',
                    'H00-H59  Diseases of the eye and adnexa',
                    'H60-H95  Diseases of the ear and mastoid process',
                    'I00-I99  Diseases of the circulatory system',
                    'J00-J99  Diseases of the respiratory system',
                    'K00-K95  Diseases of the digestive system',
                    'L00-L99  Diseases of the skin and subcutaneous tissue',
                    'M00-M99  Diseases of the musculoskeletal system and connective tissue',
                    'N00-N99  Diseases of the genitourinary system',
                    'O00-O9A  Pregnancy, childbirth and the puerperium',
                    'P00-P96  Certain conditions originating in the perinatal period',
                    'Q00-Q99  Congenital malformations, deformations and chromosomal abnormalities',
                    'R00-R99  Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified',
                    'S00-T88  Injury, poisoning and certain other consequences of external causes',
                    'U00-U85  Codes for special purposes',
                    'V00-Y99  External causes of morbidity',
                    'Z00-Z99  Factors influencing health status and contact with health services',
                ]),
            }
        )
        
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""

        data_dir = dl_manager.download_and_extract(_URL)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "base_path": data_dir,
                    "filepath": data_dir + "/splits/train.json",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "base_path": data_dir,
                    "filepath": data_dir + "/splits/validation.json",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "base_path": data_dir,
                    "filepath": data_dir + "/splits/test.json",
                },
            ),
        ]

    def _generate_examples(self, base_path, filepath):

        with open(filepath, encoding="utf-8") as f:

            data = json.load(f)

            for key, d in enumerate(data):
                
                if str(d["icd-10"]) == "nan" or d["icd-10"].find("Plusieurs cas cliniques") != -1 or d["icd-10"].find("Aucune annotation") != -1:
                    continue

                yield key, {
                    "identifier": d["identifier"],
                    "title": d["title"],
                    "clinical_case": d["clinical_case"],
                    "topic": d["topic"],
                    "keywords": d["keywords"],
                    "domains": d["domain"],
                    "collected_at": d["collected_at"],
                    "published_at": d["published_at"],
                    "source_url": d["source_url"],
                    "source_name": d["source_name"],
                    "license": d["license"],
                    "figures_urls": d["figures"],
                    "figures": [base_path + fg.lstrip(".") for fg in d["local_figures"]],
                    "figures_paths": [base_path + fg.lstrip(".") for fg in d["local_figures"]],
                    "icd-10": d["icd-10"],
                }