Datasets:
File size: 6,653 Bytes
021e040 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
---
annotations_creators:
- machine-generated
language_creators:
- machine-generated
language:
- as
- bn
- gu
- hi
- kn
- ml
- mr
- or
- pa
- ta
- te
license:
- cc0-1.0
multilinguality:
- multilingual
pretty_name: IndicXNLI
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- natural-language-inference
---
# Dataset Card for "IndicXNLI"
## Table of Contents
- [Dataset Card for "IndicXNLI"](#dataset-card-for-indicxnli)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset usage](#dataset-usage)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Human Verification Process](#human-verification-process)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** <https://github.com/divyanshuaggarwal/IndicXNLI>
- **Paper:** [IndicXNLI: Evaluating Multilingual Inference for Indian Languages](https://arxiv.org/abs/2204.08776)
- **Point of Contact:** [Divyanshu Aggarwal](mailto:divyanshuggrwl@gmail.com)
### Dataset Summary
INDICXNLI is similar to existing
XNLI dataset in shape/form, but focusses on Indic language family. INDICXNLI include NLI
data for eleven major Indic languages that includes
Assamese (‘as’), Gujarat (‘gu’), Kannada (‘kn’),
Malayalam (‘ml’), Marathi (‘mr’), Odia (‘or’),
Punjabi (‘pa’), Tamil (‘ta’), Telugu (‘te’), Hindi
(‘hi’), and Bengali (‘bn’).
### Supported Tasks and Leaderboards
**Tasks:** Natural Language Inference
**Leaderboards:** Currently there is no Leaderboard for this dataset.
### Languages
- `Assamese (as)`
- `Bengali (bn)`
- `Gujarati (gu)`
- `Kannada (kn)`
- `Hindi (hi)`
- `Malayalam (ml)`
- `Marathi (mr)`
- `Oriya (or)`
- `Punjabi (pa)`
- `Tamil (ta)`
- `Telugu (te)`
## Dataset Structure
### Data Instances
One example from the `hi` dataset is given below in JSON format.
```python
{'premise': 'अवधारणात्मक रूप से क्रीम स्किमिंग के दो बुनियादी आयाम हैं-उत्पाद और भूगोल।',
'hypothesis': 'उत्पाद और भूगोल क्रीम स्किमिंग का काम करते हैं।',
'label': 1 (neutral) }
```
### Data Fields
- `premise (string)`: Premise Sentence
- `hypothesis (string)`: Hypothesis Sentence
- `label (integer)`: Integer label `0` if hypothesis `entails` the premise, `2` if hypothesis `negates` the premise and `1` otherwise.
### Data Splits
<!-- Below is the dataset split given for `hi` dataset.
```python
DatasetDict({
train: Dataset({
features: ['premise', 'hypothesis', 'label'],
num_rows: 392702
})
test: Dataset({
features: ['premise', 'hypothesis', 'label'],
num_rows: 5010
})
validation: Dataset({
features: ['premise', 'hypothesis', 'label'],
num_rows: 2490
})
})
``` -->
Language | ISO 639-1 Code |Train | Dev | Test |
--------------|----------------|-------|-----|------|
Assamese | as | 392,702 | 5,010 | 2,490 |
Bengali | bn | 392,702 | 5,010 | 2,490 |
Gujarati | gu | 392,702 | 5,010 | 2,490 |
Hindi | hi | 392,702 | 5,010 | 2,490 |
Kannada | kn | 392,702 | 5,010 | 2,490 |
Malayalam | ml |392,702 | 5,010 | 2,490 |
Marathi | mr |392,702 | 5,010 | 2,490 |
Oriya | or | 392,702 | 5,010 | 2,490 |
Punjabi | pa | 392,702 | 5,010 | 2,490 |
Tamil | ta | 392,702 | 5,010 | 2,490 |
Telugu | te | 392,702 | 5,010 | 2,490 |
<!-- The dataset split remains same across all languages. -->
## Dataset usage
Code snippet for using the dataset using datasets library.
```python
from datasets import load_dataset
dataset = load_dataset("Divyanshu/indicxnli")
```
## Dataset Creation
Machine translation of XNLI english dataset to 11 listed Indic Languages.
### Curation Rationale
[More information needed]
### Source Data
[XNLI dataset](https://cims.nyu.edu/~sbowman/xnli/)
#### Initial Data Collection and Normalization
[Detailed in the paper](https://arxiv.org/abs/2204.08776)
#### Who are the source language producers?
[Detailed in the paper](https://arxiv.org/abs/2204.08776)
#### Human Verification Process
[Detailed in the paper](https://arxiv.org/abs/2204.08776)
## Considerations for Using the Data
### Social Impact of Dataset
[Detailed in the paper](https://arxiv.org/abs/2204.08776)
### Discussion of Biases
[Detailed in the paper](https://arxiv.org/abs/2204.08776)
### Other Known Limitations
[Detailed in the paper](https://arxiv.org/abs/2204.08776)
### Dataset Curators
Divyanshu Aggarwal, Vivek Gupta, Anoop Kunchukuttan
### Licensing Information
Contents of this repository are restricted to only non-commercial research purposes under the [Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/). Copyright of the dataset contents belongs to the original copyright holders.
### Citation Information
If you use any of the datasets, models or code modules, please cite the following paper:
```
@misc{https://doi.org/10.48550/arxiv.2204.08776,
doi = {10.48550/ARXIV.2204.08776},
url = {https://arxiv.org/abs/2204.08776},
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!-- ### Contributions -->
|