Datasets:
File size: 5,007 Bytes
148f296 021e040 5dfe18b 021e040 dca09f9 148f296 021e040 7f17ee7 021e040 b1ea3e7 021e040 0d26cc5 021e040 b1ea3e7 0d26cc5 021e040 0d26cc5 021e040 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
---
annotations_creators:
- machine-generated
language_creators:
- machine-generated
language:
- as
- bn
- gu
- hi
- kn
- ml
- mr
- or
- pa
- ta
- te
license:
- cc0-1.0
multilinguality:
- multilingual
pretty_name: IE-SemParse
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- text2text-generation
task_ids:
- parsing
---
# Dataset Card for "IE-SemParse"
## Table of Contents
- [Dataset Card for "IE-SemParse"](#dataset-card-for-ie-semparse)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset usage](#dataset-usage)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Human Verification Process](#human-verification-process)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** <https://github.com/divyanshuaggarwal/IE-SemParse>
- **Paper:** [Evaluating Inter-Bilingual Semantic Parsing for Indian Languages](https://arxiv.org/abs/2304.13005)
- **Point of Contact:** [Divyanshu Aggarwal](mailto:divyanshuggrwl@gmail.com)
### Dataset Summary
IE-SemParse is an InterBilingual Semantic Parsing Dataset for eleven major Indic languages that includes
Assamese (‘as’), Gujarat (‘gu’), Kannada (‘kn’),
Malayalam (‘ml’), Marathi (‘mr’), Odia (‘or’),
Punjabi (‘pa’), Tamil (‘ta’), Telugu (‘te’), Hindi
(‘hi’), and Bengali (‘bn’).
### Supported Tasks and Leaderboards
**Tasks:** Inter-Bilingual Semantic Parsing
**Leaderboards:** Currently there is no Leaderboard for this dataset.
### Languages
- `Assamese (as)`
- `Bengali (bn)`
- `Gujarati (gu)`
- `Kannada (kn)`
- `Hindi (hi)`
- `Malayalam (ml)`
- `Marathi (mr)`
- `Oriya (or)`
- `Punjabi (pa)`
- `Tamil (ta)`
- `Telugu (te)`
...
<!-- Below is the dataset split given for `hi` dataset.
```python
DatasetDict({
train: Dataset({
features: ['utterance', 'logical form', 'intent'],
num_rows: 36000
})
test: Dataset({
features: ['utterance', 'logical form', 'intent'],
num_rows: 3000
})
validation: Dataset({
features: ['utterance', 'logical form', 'intent'],
num_rows: 1500
})
})
``` -->
## Dataset usage
Code snippet for using the dataset using datasets library.
```python
from datasets import load_dataset
dataset = load_dataset("Divyanshu/IE_SemParse")
```
## Dataset Creation
Machine translation of 3 multilingual semantic Parsing datasets english dataset to 11 listed Indic Languages.
### Curation Rationale
[More information needed]
### Source Data
[mTOP dataset](https://aclanthology.org/2021.eacl-main.257/)
[multilingualTOP dataset](https://github.com/awslabs/multilingual-top)
[multi-ATIS++ dataset](https://paperswithcode.com/paper/end-to-end-slot-alignment-and-recognition-for)
#### Initial Data Collection and Normalization
[Detailed in the paper](https://arxiv.org/abs/2304.13005)
#### Who are the source language producers?
[Detailed in the paper](https://arxiv.org/abs/2304.13005)
#### Human Verification Process
[Detailed in the paper](https://arxiv.org/abs/2304.13005)
## Considerations for Using the Data
### Social Impact of Dataset
[Detailed in the paper](https://arxiv.org/abs/2304.13005)
### Discussion of Biases
[Detailed in the paper](https://arxiv.org/abs/2304.13005)
### Other Known Limitations
[Detailed in the paper](https://arxiv.org/abs/2304.13005)
### Dataset Curators
Divyanshu Aggarwal, Vivek Gupta, Anoop Kunchukuttan
### Licensing Information
Contents of this repository are restricted to only non-commercial research purposes under the [Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/). Copyright of the dataset contents belongs to the original copyright holders.
### Citation Information
If you use any of the datasets, models or code modules, please cite the following paper:
```
@misc{aggarwal2023evaluating,
title={Evaluating Inter-Bilingual Semantic Parsing for Indian Languages},
author={Divyanshu Aggarwal and Vivek Gupta and Anoop Kunchukuttan},
year={2023},
eprint={2304.13005},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!-- ### Contributions -->
|