File size: 1,801 Bytes
f492854 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
# Config seed = 2021 # 2021 Train, 2022 Val, 2023 Test, you have to change the generateData.py seed as well #from GenerateData import seed import random random.seed(seed) np.random.seed(seed=seed) # fix the seed for reproducibility #NOTE: For linux you can only use unique numVars, in Windows, it is possible to use [1,2,3,4] * 10! numVars = [1] #list(range(31)) #[1,2,3,4,5] decimals = 8 numberofPoints = [30,31] # only usable if support points has not been provided numSamples = 10000 # number of generated samples folder = './Dataset' dataPath = folder +'/{}_{}_{}.json' testPoints = False trainRange = [-3.0,3.0] testRange = [[-5.0, 3.0],[-3.0, 5.0]] # this means Union((-5,-1),(1,5)) supportPoints = None #supportPoints = np.linspace(xRange[0],xRange[1],numberofPoints[1]) #supportPoints = [[np.round(p,decimals)] for p in supportPoints] #supportPoints = [[np.round(p,decimals), np.round(p,decimals)] for p in supportPoints] #supportPoints = [[np.round(p,decimals) for i in range(numVars[0])] for p in supportPoints] supportPointsTest = None #supportPoints = None # uncomment this line if you don't want to use support points #supportPointsTest = np.linspace(xRange[0],xRange[1],numberofPoints[1]) #supportPointsTest = [[np.round(p,decimals) for i in range(numVars[0])] for p in supportPointsTest] n_levels = 4 allow_constants = True const_range = [-2.1, 2.1] const_ratio = 0.5 op_list=[ "id", "add", "mul", "sin", "pow", "cos", "exp", "div", "sub", "log" ] exponents=[3, 4, 5, 6] sortY = False # if the data is sorted based on y numSamplesEachEq = 50 threshold = 5000 templatesEQs = None |