File size: 6,638 Bytes
6b5bf53 fff0586 6b5bf53 4851a70 6b5bf53 4274ecc 6b5bf53 4274ecc 6b5bf53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import datasets
import h5py
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{cabuar,
title={Ca{B}u{A}r: California {B}urned {A}reas dataset for delineation},
author={Rege Cambrin, Daniele and Colomba, Luca and Garza, Paolo},
journal={IEEE Geoscience and Remote Sensing Magazine},
doi={10.1109/MGRS.2023.3292467},
year={2023}
}
"""
# You can copy an official description
_DESCRIPTION = """\
CaBuAr dataset contains images from Sentinel-2 satellites taken before and after a wildfire.
The ground truth masks are provided by the California Department of Forestry and Fire Protection and they are mapped on the images.
"""
_HOMEPAGE = "https://huggingface.co/datasets/DarthReca/california_burned_areas"
_LICENSE = "OPENRAIL"
_URLS = "raw/patched/512x512.hdf5"
class CaBuArConfig(datasets.BuilderConfig):
"""BuilderConfig for CaBuAr.
Parameters
----------
load_prefire: bool
whether to load prefire data
train_folds: List[int]
list of folds to use for training
validation_folds: List[int]
list of folds to use for validation
test_folds: List[int]
list of folds to use for testing
**kwargs
keyword arguments forwarded to super.
"""
def __init__(
self,
load_prefire: bool,
train_folds: List[int],
validation_folds: List[int],
test_folds: List[int],
**kwargs
):
super(CaBuArConfig, self).__init__(**kwargs)
self.load_prefire = load_prefire
self.train_folds = train_folds
self.validation_folds = validation_folds
self.test_folds = test_folds
class CaBuAr(datasets.GeneratorBasedBuilder):
"""California Burned Areas dataset."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
CaBuArConfig(
name="post-fire",
version=VERSION,
description="Post-fire only version of the dataset",
load_prefire=False,
train_folds=None,
validation_folds=None,
test_folds=None,
),
CaBuArConfig(
name="pre-post-fire",
version=VERSION,
description="Pre-fire and post-fire version of the dataset",
load_prefire=True,
train_folds=None,
validation_folds=None,
test_folds=None,
),
]
DEFAULT_CONFIG_NAME = "post-fire"
BUILDER_CONFIG_CLASS = CaBuArConfig
def _info(self):
if self.config.name == "pre-post-fire":
features = datasets.Features(
{
"post_fire": datasets.Array3D((512, 512, 12), dtype="uint16"),
"pre_fire": datasets.Array3D((512, 512, 12), dtype="uint16"),
"mask": datasets.Array3D((512, 512, 1), dtype="uint16"),
}
)
else:
features = datasets.Features(
{
"post_fire": datasets.Array3D((512, 512, 12), dtype="uint16"),
"mask": datasets.Array3D((512, 512, 12), dtype="uint16"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
h5_file = dl_manager.download(_URLS)
# Raise ValueError if train_folds, validation_folds or test_folds are not set
if (
self.config.train_folds is None
or self.config.validation_folds is None
or self.config.test_folds is None
):
raise ValueError("train_folds, validation_folds and test_folds must be set")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"folds": self.config.train_folds,
"load_prefire": self.config.load_prefire,
"filepath": h5_file,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"folds:": self.config.validation_folds,
"load_prefire": self.config.load_prefire,
"filepath": h5_file,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"folds": self.config.test_folds,
"load_prefire": self.config.load_prefire,
"filepath": h5_file,
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, folds: List[int], load_prefire: bool, filepath):
with h5py.File(filepath, "r") as f:
for uuid, values in f.items():
if values.attrs["fold"] not in folds:
continue
if load_prefire and "pre_fire" not in values:
continue
sample = {
"post_fire": values["post_fire"][...],
"mask": values["mask"][...],
}
if load_prefire:
sample["pre_fire"] = values["pre_fire"][...]
yield uuid, sample
|