metadata
dataset_info:
- config_name: ee
features:
- name: id
dtype: string
- name: text
dtype: string
- name: entity_mentions
list:
- name: id
dtype: string
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: char_start
dtype: int64
- name: char_end
dtype: int64
- name: type
dtype: string
- name: event_mentions
list:
- name: id
dtype: string
- name: trigger
struct:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: char_start
dtype: int64
- name: char_end
dtype: int64
- name: arguments
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: char_start
dtype: int64
- name: char_end
dtype: int64
- name: role
dtype: string
- name: type
dtype: string
- name: event_type
dtype: string
- name: tokens
sequence: string
- name: pos_tags
sequence: string
- name: lemma
sequence: string
- name: ner_tags
sequence: string
splits:
- name: train
num_bytes: 6532239
num_examples: 1861
- name: validation
num_bytes: 792697
num_examples: 228
- name: test
num_bytes: 802322
num_examples: 230
download_size: 3171788
dataset_size: 8127258
- config_name: ner
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence: string
splits:
- name: train
num_bytes: 2062754
num_examples: 1861
- name: validation
num_bytes: 250635
num_examples: 228
- name: test
num_bytes: 255164
num_examples: 230
download_size: 736425
dataset_size: 2568553
- config_name: re
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: entities
sequence:
sequence: int64
- name: entity_roles
sequence: string
- name: entity_types
sequence: string
- name: event_type
dtype: string
- name: entity_ids
sequence: string
splits:
- name: train
num_bytes: 2116771
num_examples: 1007
- name: validation
num_bytes: 265248
num_examples: 129
- name: test
num_bytes: 238094
num_examples: 128
download_size: 801404
dataset_size: 2620113
configs:
- config_name: ee
data_files:
- split: train
path: ee/train-*
- split: validation
path: ee/validation-*
- split: test
path: ee/test-*
- config_name: ner
data_files:
- split: train
path: ner/train-*
- split: validation
path: ner/validation-*
- split: test
path: ner/test-*
- config_name: re
data_files:
- split: train
path: re/train-*
- split: validation
path: re/validation-*
- split: test
path: re/test-*
license: cc-by-4.0
task_categories:
- text-classification
- token-classification
language:
- de
tags:
- finance
- relation-extraction
- event-extraction
- traffic
- industry
pretty_name: SmartData Corpus
size_categories:
- 1K<n<10K
Dataset Card for SmartData Corpus
Dataset Description
- Repository: https://github.com/dfki-nlp/smartdata-corpus
- Paper: A German Corpus for Fine-Grained Named Entity Recognition and Relation Extraction of Traffic and Industry Events
Dataset Summary
SmartData Corpus is a German-language dataset which is human-annotated with entity types and a set of 15 traffic- and industry-related n-ary relations and events, such as accidents, traffic jams, acquisitions, and strikes. The corpus consists of newswire texts, Twitter messages, and traffic reports from radio stations, police and railway companies.
This version of the dataset loader provides configurations for:
- Named Entity Recognition (
ner
): NER tags use theBIO
tagging scheme - Relation Extraction (
re
): n-ary Relation Extraction - Event Extraction (
ee
): formatted similar to https://github.com/nlpcl-lab/ace2005-preprocessing?tab=readme-ov-file#format
For more details see https://github.com/dfki-nlp/smartdata-corpus and https://www.dfki.de/web/forschung/projekte-publikationen/publikation/9427/.
Supported Tasks and Leaderboards
- Tasks: Named Entity Recognition, n-ary Relation Extraction, Event Extraction
- Leaderboards:
Languages
German
Dataset Structure
Data Instances
ner
An example of 'train' looks as follows.
{
"id": "671734738147758080",
"tokens": ["A1", "Zwischen", "AS", "Munsbach", "und", "AS", "Flaxweiler", "Bauarbeiten", ",", "rechter", "Fahrstreifen", "gesperrt", ",", "Verkehrsbehinderung", ",", "Dauer", ":", "02.12.2015", "...", "#ACL_A1"],
"ner_tags": ["B-LOCATION_STREET", "O", "B-LOCATION", "I-LOCATION", "O", "B-LOCATION", "I-LOCATION", "O", "O", "O", "O", "O", "O", "B-TRIGGER", "O", "O", "O", "B-DATE", "O", "B-LOCATION_STREET"]
}
re
An example of 'train' looks as follows.
{
"id": "671734738147758080_0",
"tokens": ["A1", "Zwischen", "AS", "Munsbach", "und", "AS", "Flaxweiler", "Bauarbeiten", ",", "rechter", "Fahrstreifen", "gesperrt", ",", "Verkehrsbehinderung", ",", "Dauer", ":", "02.12.2015", "...", "#ACL_A1"],
"entities": [[0, 1], [2, 4], [5, 7], [13, 14], [17, 18], [19, 20]],
"entity_roles": ["location", "start_loc", "end_loc", "trigger", "end_date", "no_arg"],
"entity_types": ["LOCATION_STREET", "LOCATION", "LOCATION", "TRIGGER", "DATE", "LOCATION_STREET"],
"event_type": "Obstruction",
"entity_ids": ["c/ac611f0a-d610-4ab2-9ddf-00132d9374b5", "c/3e01d530-58c4-4f47-9ab3-082a58e8299b", "c/cb6975e8-4409-4bdf-a491-de398b3c3263", "c/684a0ccd-06ff-4a8f-a90f-bdef169077dc", "c/166acddb-0f4d-48eb-98f6-a8b490f2e578", "c/ca3befa0-92da-4ff9-b34d-ec351854cdda"]
}
ee
An example of 'train' looks as follows.
{
"id": "671734738147758080",
"text": "A1 Zwischen AS Munsbach und AS Flaxweiler Bauarbeiten, rechter Fahrstreifen gesperrt, Verkehrsbehinderung, Dauer: 02.12.2015... #ACL_A1\n",
"entity_mentions": [
{"id": "c/ac611f0a-d610-4ab2-9ddf-00132d9374b5", "text": "A1", "start": 0, "end": 1, "char_start": 0, "char_end": 2, "type": "LOCATION_STREET"},
{"id": "c/3e01d530-58c4-4f47-9ab3-082a58e8299b", "text": "AS Munsbach", "start": 2, "end": 4, "char_start": 12, "char_end": 23, "type": "LOCATION"},
{"id": "c/cb6975e8-4409-4bdf-a491-de398b3c3263", "text": "AS Flaxweiler", "start": 5, "end": 7, "char_start": 28, "char_end": 41, "type": "LOCATION"},
{"id": "c/684a0ccd-06ff-4a8f-a90f-bdef169077dc", "text": "Verkehrsbehinderung", "start": 13, "end": 14, "char_start": 86, "char_end": 105, "type": "TRIGGER"},
{"id": "c/166acddb-0f4d-48eb-98f6-a8b490f2e578", "text": "02.12.2015", "start": 17, "end": 18, "char_start": 114, "char_end": 124, "type": "DATE"},
{"id": "c/ca3befa0-92da-4ff9-b34d-ec351854cdda", "text": "#ACL_A1", "start": 19, "end": 20, "char_start": 128, "char_end": 135, "type": "LOCATION_STREET"}
],
"event_mentions": [
{
"id": "r/802a82c2-c214-4429-b9f1-bf56e46674ee",
"trigger": {
"text": "Verkehrsbehinderung", "start": 13, "end": 14, "char_start": 86, "char_end": 105
},
"arguments": [
{"text": "02.12.2015", "start": 17, "end": 18, "char_start": 114, "char_end": 124, "role": "end_date", "type": "date"},
{"text": "AS Flaxweiler", "start": 5, "end": 7, "char_start": 28, "char_end": 41, "role": "end_loc", "type": "location"},
{"text": "AS Munsbach", "start": 2, "end": 4, "char_start": 12, "char_end": 23, "role": "start_loc", "type": "location"},
{"text": "A1", "start": 0, "end": 1, "char_start": 0, "char_end": 2, "role": "location", "type": "location-street"}
],
"event_type": "Obstruction"
}
],
"tokens": ["A1", "Zwischen", "AS", "Munsbach", "und", "AS", "Flaxweiler", "Bauarbeiten", ",", "rechter", "Fahrstreifen", "gesperrt", ",", "Verkehrsbehinderung", ",", "Dauer", ":", "02.12.2015", "...", "#ACL_A1"],
"pos_tags": ["CARD", "APPR", "NE", "NE", "KON", "NE", "NE", "NN", "$,", "ADJA", "NN", "VVPP", "$,", "NN", "$,", "NN", "$.", "CARD", "$[", "CARD"],
"lemma": ["a1", "zwischen", "as", "munsbach", "und", "as", "flaxweiler", "bauarbeiten", ",", "rechter", "fahrstreifen", "gesperrt", ",", "verkehrsbehinderung", ",", "dauer", ":", "02.12.2015", "...", "#acl_a1"],
"ner_tags": ["B-LOCATION_STREET", "O", "B-LOCATION", "I-LOCATION", "O", "B-LOCATION", "I-LOCATION", "O", "O", "O", "O", "O", "O", "B-TRIGGER", "O", "O", "O", "B-DATE", "O", "B-LOCATION_STREET"]
}
Data Fields
ner
id
: example identifier, astring
feature.tokens
: list of tokens, alist
ofstring
features.ner_tags
: list of NER tags, alist
ofstring
features.
re
id
: example identifier, astring
feature.text
: example text, astring
feature.tokens
: list of tokens, alist
ofstring
features.entities
: a list of token spans, alist
ofint64
features.entity_roles
: alist
of entity roles, a list ofstring
features.event_type
: the event type, astring
feature.entity_ids
: list of entity ids, alist
ofstring
features.
ee
id
: example identifier, astring
feature.text
: example text, astring
feature.entity_mentions
: alist
ofstruct
features.text
: astring
feature.start
: token offset start, aint64
feature.end
: token offset end, aint64
feature.char_start
: character offset start, aint64
feature.char_end
: character offset end, aint64
feature.type
: entity type, astring
feature.id
: entity id, astring
feature.
event_mentions
: a list ofstruct
features.id
: event identifier, astring
feature.trigger
: astruct
feature.text
: astring
feature.start
: token offset start, aint64
feature.end
: token offset end, aint64
feature.char_start
: character offset start, aint64
feature.char_end
: character offset end, aint64
feature.
arguments
: a list ofstruct
features.text
: astring
feature.start
: token offset start, aint64
feature.end
: token offset end, aint64
feature.char_start
: character offset start, aint64
feature.char_end
: character offset end, aint64
feature.role
: role of the argument, astring
feature.type
: entity type of the argument, astring
feature.
event_type
: a classification label, astring
feature.
tokens
: list of tokens, alist
ofstring
features.pos_tags
: list of part-of-speech tags, alist
ofstring
features.lemma
: list of lemmatized tokens, alist
ofstring
features.ner_tags
: alist
of NER tags, a list ofstring
features.
Licensing Information
Citation Information
BibTeX:
@InProceedings{SCHIERSCH18.85,
author = {Martin Schiersch and Veselina Mironova and Maximilian Schmitt and Philippe Thomas and Aleksandra Gabryszak and Leonhard Hennig},
title = "{A German Corpus for Fine-Grained Named Entity Recognition and Relation Extraction of Traffic and Industry Events}",
booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
year = {2018},
month = {May 7-12, 2018},
address = {Miyazaki, Japan},
editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga},
publisher = {European Language Resources Association (ELRA)},
isbn = {979-10-95546-00-9},
language = {english}
}
APA:
- Schiersch, M., Mironova, V., Schmitt, M., Thomas, P., Gabryszak, A., & Hennig, L. (2018). A German Corpus for Fine-Grained Named Entity Recognition and Relation Extraction of Traffic and Industry Events. In N. Calzolari (Conference chair), K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, & T. Tokunaga (Eds.), Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) (pp. Unknown). Miyazaki, Japan: European Language Resources Association (ELRA). ISBN: 979-10-95546-00-9.