Datasets:
annotations_creators:
- expert-generated
language:
- en
language_creators:
- found
license: []
multilinguality:
- monolingual
pretty_name: CrossRE is a cross-domain dataset for relation extraction
size_categories:
- 10K<n<100K
source_datasets:
- extended|cross_ner
tags:
- cross domain
- ai
- news
- music
- literature
- politics
- science
task_categories:
- text-classification
task_ids:
- multi-class-classification
dataset_info:
- config_name: ai
features:
- name: doc_key
dtype: string
- name: sentence
sequence: string
- name: ner
sequence:
- name: id-start
dtype: int32
- name: id-end
dtype: int32
- name: entity-type
dtype: string
- name: relations
sequence:
- name: id_1-start
dtype: int32
- name: id_1-end
dtype: int32
- name: id_2-start
dtype: int32
- name: id_2-end
dtype: int32
- name: relation-type
dtype: string
- name: Exp
dtype: string
- name: Un
dtype: bool
- name: SA
dtype: bool
splits:
- name: train
num_bytes: 62411
num_examples: 100
- name: validation
num_bytes: 183717
num_examples: 350
- name: test
num_bytes: 217353
num_examples: 431
download_size: 508107
dataset_size: 463481
- config_name: literature
features:
- name: doc_key
dtype: string
- name: sentence
sequence: string
- name: ner
sequence:
- name: id-start
dtype: int32
- name: id-end
dtype: int32
- name: entity-type
dtype: string
- name: relations
sequence:
- name: id_1-start
dtype: int32
- name: id_1-end
dtype: int32
- name: id_2-start
dtype: int32
- name: id_2-end
dtype: int32
- name: relation-type
dtype: string
- name: Exp
dtype: string
- name: Un
dtype: bool
- name: SA
dtype: bool
splits:
- name: train
num_bytes: 62699
num_examples: 100
- name: validation
num_bytes: 246214
num_examples: 400
- name: test
num_bytes: 264450
num_examples: 416
download_size: 635130
dataset_size: 573363
- config_name: music
features:
- name: doc_key
dtype: string
- name: sentence
sequence: string
- name: ner
sequence:
- name: id-start
dtype: int32
- name: id-end
dtype: int32
- name: entity-type
dtype: string
- name: relations
sequence:
- name: id_1-start
dtype: int32
- name: id_1-end
dtype: int32
- name: id_2-start
dtype: int32
- name: id_2-end
dtype: int32
- name: relation-type
dtype: string
- name: Exp
dtype: string
- name: Un
dtype: bool
- name: SA
dtype: bool
splits:
- name: train
num_bytes: 69846
num_examples: 100
- name: validation
num_bytes: 261497
num_examples: 350
- name: test
num_bytes: 312165
num_examples: 399
download_size: 726956
dataset_size: 643508
- config_name: news
features:
- name: doc_key
dtype: string
- name: sentence
sequence: string
- name: ner
sequence:
- name: id-start
dtype: int32
- name: id-end
dtype: int32
- name: entity-type
dtype: string
- name: relations
sequence:
- name: id_1-start
dtype: int32
- name: id_1-end
dtype: int32
- name: id_2-start
dtype: int32
- name: id_2-end
dtype: int32
- name: relation-type
dtype: string
- name: Exp
dtype: string
- name: Un
dtype: bool
- name: SA
dtype: bool
splits:
- name: train
num_bytes: 49102
num_examples: 164
- name: validation
num_bytes: 77952
num_examples: 350
- name: test
num_bytes: 96301
num_examples: 400
download_size: 239763
dataset_size: 223355
- config_name: politics
features:
- name: doc_key
dtype: string
- name: sentence
sequence: string
- name: ner
sequence:
- name: id-start
dtype: int32
- name: id-end
dtype: int32
- name: entity-type
dtype: string
- name: relations
sequence:
- name: id_1-start
dtype: int32
- name: id_1-end
dtype: int32
- name: id_2-start
dtype: int32
- name: id_2-end
dtype: int32
- name: relation-type
dtype: string
- name: Exp
dtype: string
- name: Un
dtype: bool
- name: SA
dtype: bool
splits:
- name: train
num_bytes: 76004
num_examples: 101
- name: validation
num_bytes: 277633
num_examples: 350
- name: test
num_bytes: 295294
num_examples: 400
download_size: 726427
dataset_size: 648931
- config_name: science
features:
- name: doc_key
dtype: string
- name: sentence
sequence: string
- name: ner
sequence:
- name: id-start
dtype: int32
- name: id-end
dtype: int32
- name: entity-type
dtype: string
- name: relations
sequence:
- name: id_1-start
dtype: int32
- name: id_1-end
dtype: int32
- name: id_2-start
dtype: int32
- name: id_2-end
dtype: int32
- name: relation-type
dtype: string
- name: Exp
dtype: string
- name: Un
dtype: bool
- name: SA
dtype: bool
splits:
- name: train
num_bytes: 63876
num_examples: 103
- name: validation
num_bytes: 224402
num_examples: 351
- name: test
num_bytes: 249075
num_examples: 400
download_size: 594058
dataset_size: 537353
Dataset Card for CrossRE
Table of Contents
- Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Repository: CrossRE
- Paper: CrossRE: A Cross-Domain Dataset for Relation Extraction
Dataset Summary
CrossRE is a new, freely-available crossdomain benchmark for RE, which comprises six distinct text domains and includes multilabel annotations. It includes the following domains: news, politics, natural science, music, literature and artificial intelligence. The semantic relations are annotated on top of CrossNER (Liu et al., 2021), a cross-domain dataset for NER which contains domain-specific entity types. The dataset contains 17 relation labels for the six domains: PART-OF, PHYSICAL, USAGE, ROLE, SOCIAL, GENERAL-AFFILIATION, COMPARE, TEMPORAL, ARTIFACT, ORIGIN, TOPIC, OPPOSITE, CAUSE-EFFECT, WIN-DEFEAT, TYPEOF, NAMED, and RELATED-TO.
For details, see the paper: https://arxiv.org/abs/2210.09345
Supported Tasks and Leaderboards
Languages
The language data in CrossRE is in English (BCP-47 en)
Dataset Structure
Data Instances
news
- Size of downloaded dataset files: 0.24 MB
- Size of the generated dataset: 0.22 MB
An example of 'train' looks as follows:
{
"doc_key": "news-train-1",
"sentence": ["EU", "rejects", "German", "call", "to", "boycott", "British", "lamb", "."],
"ner": [
{"id-start": 0, "id-end": 0, "entity-type": "organisation"},
{"id-start": 2, "id-end": 3, "entity-type": "misc"},
{"id-start": 6, "id-end": 7, "entity-type": "misc"}
],
"relations": [
{"id_1-start": 0, "id_1-end": 0, "id_2-start": 2, "id_2-end": 3, "relation-type": "opposite", "Exp": "rejects", "Un": False, "SA": False},
{"id_1-start": 2, "id_1-end": 3, "id_2-start": 6, "id_2-end": 7, "relation-type": "opposite", "Exp": "calls_for_boycot_of", "Un": False, "SA": False},
{"id_1-start": 2, "id_1-end": 3, "id_2-start": 6, "id_2-end": 7, "relation-type": "topic", "Exp": "", "Un": False, "SA": False}
]
}
politics
- Size of downloaded dataset files: 0.73 MB
- Size of the generated dataset: 0.65 MB
An example of 'train' looks as follows:
{
"doc_key": "politics-train-1",
"sentence": ["Parties", "with", "mainly", "Eurosceptic", "views", "are", "the", "ruling", "United", "Russia", ",", "and", "opposition", "parties", "the", "Communist", "Party", "of", "the", "Russian", "Federation", "and", "Liberal", "Democratic", "Party", "of", "Russia", "."],
"ner": [
{"id-start": 8, "id-end": 9, "entity-type": "politicalparty"},
{"id-start": 15, "id-end": 20, "entity-type": "politicalparty"},
{"id-start": 22, "id-end": 26, "entity-type": "politicalparty"}
],
"relations": [
{"id_1-start": 8, "id_1-end": 9, "id_2-start": 15, "id_2-end": 20, "relation-type": "opposite", "Exp": "in_opposition", "Un": False, "SA": False},
{"id_1-start": 8, "id_1-end": 9, "id_2-start": 22, "id_2-end": 26, "relation-type": "opposite", "Exp": "in_opposition", "Un": False, "SA": False}
]
}
science
- Size of downloaded dataset files: 0.59 MB
- Size of the generated dataset: 0.54 MB
An example of 'train' looks as follows:
{
"doc_key": "science-train-1",
"sentence": ["They", "may", "also", "use", "Adenosine", "triphosphate", ",", "Nitric", "oxide", ",", "and", "ROS", "for", "signaling", "in", "the", "same", "ways", "that", "animals", "do", "."],
"ner": [
{"id-start": 4, "id-end": 5, "entity-type": "chemicalcompound"},
{"id-start": 7, "id-end": 8, "entity-type": "chemicalcompound"},
{"id-start": 11, "id-end": 11, "entity-type": "chemicalcompound"}
],
"relations": []
}
music
- Size of downloaded dataset files: 0.73 MB
- Size of the generated dataset: 0.64 MB
An example of 'train' looks as follows:
{
"doc_key": "music-train-1",
"sentence": ["In", "2003", ",", "the", "Stade", "de", "France", "was", "the", "primary", "site", "of", "the", "2003", "World", "Championships", "in", "Athletics", "."],
"ner": [
{"id-start": 4, "id-end": 6, "entity-type": "location"},
{"id-start": 13, "id-end": 17, "entity-type": "event"}
],
"relations": [
{"id_1-start": 13, "id_1-end": 17, "id_2-start": 4, "id_2-end": 6, "relation-type": "physical", "Exp": "", "Un": False, "SA": False}
]
}
literature
- Size of downloaded dataset files: 0.64 MB
- Size of the generated dataset: 0.57 MB
An example of 'train' looks as follows:
{
"doc_key": "literature-train-1",
"sentence": ["In", "1351", ",", "during", "the", "reign", "of", "Emperor", "Toghon", "Temür", "of", "the", "Yuan", "dynasty", ",", "93rd-generation", "descendant", "Kong", "Huan", "(", "孔浣", ")", "'", "s", "2nd", "son", "Kong", "Shao", "(", "孔昭", ")", "moved", "from", "China", "to", "Korea", "during", "the", "Goryeo", ",", "and", "was", "received", "courteously", "by", "Princess", "Noguk", "(", "the", "Mongolian-born", "wife", "of", "the", "future", "king", "Gongmin", ")", "."],
"ner": [
{"id-start": 7, "id-end": 9, "entity-type": "person"},
{"id-start": 12, "id-end": 13, "entity-type": "country"},
{"id-start": 17, "id-end": 18, "entity-type": "writer"},
{"id-start": 20, "id-end": 20, "entity-type": "writer"},
{"id-start": 26, "id-end": 27, "entity-type": "writer"},
{"id-start": 29, "id-end": 29, "entity-type": "writer"},
{"id-start": 33, "id-end": 33, "entity-type": "country"},
{"id-start": 35, "id-end": 35, "entity-type": "country"},
{"id-start": 38, "id-end": 38, "entity-type": "misc"},
{"id-start": 45, "id-end": 46, "entity-type": "person"},
{"id-start": 49, "id-end": 50, "entity-type": "misc"},
{"id-start": 55, "id-end": 55, "entity-type": "person"}
],
"relations": [
{"id_1-start": 7, "id_1-end": 9, "id_2-start": 12, "id_2-end": 13, "relation-type": "role", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 7, "id_1-end": 9, "id_2-start": 12, "id_2-end": 13, "relation-type": "temporal", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 17, "id_1-end": 18, "id_2-start": 26, "id_2-end": 27, "relation-type": "social", "Exp": "family", "Un": False, "SA": False},
{"id_1-start": 20, "id_1-end": 20, "id_2-start": 17, "id_2-end": 18, "relation-type": "named", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 26, "id_1-end": 27, "id_2-start": 33, "id_2-end": 33, "relation-type": "physical", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 26, "id_1-end": 27, "id_2-start": 35, "id_2-end": 35, "relation-type": "physical", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 26, "id_1-end": 27, "id_2-start": 38, "id_2-end": 38, "relation-type": "temporal", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 26, "id_1-end": 27, "id_2-start": 45, "id_2-end": 46, "relation-type": "social", "Exp": "greeted_by", "Un": False, "SA": False},
{"id_1-start": 29, "id_1-end": 29, "id_2-start": 26, "id_2-end": 27, "relation-type": "named", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 45, "id_1-end": 46, "id_2-start": 55, "id_2-end": 55, "relation-type": "social", "Exp": "marriage", "Un": False, "SA": False},
{"id_1-start": 49, "id_1-end": 50, "id_2-start": 45, "id_2-end": 46, "relation-type": "named", "Exp": "", "Un": False, "SA": False}
]
}
ai
- Size of downloaded dataset files: 0.51 MB
- Size of the generated dataset: 0.46 MB
An example of 'train' looks as follows:
{
"doc_key": "ai-train-1",
"sentence": ["Popular", "approaches", "of", "opinion-based", "recommender", "system", "utilize", "various", "techniques", "including", "text", "mining", ",", "information", "retrieval", ",", "sentiment", "analysis", "(", "see", "also", "Multimodal", "sentiment", "analysis", ")", "and", "deep", "learning", "X.Y.", "Feng", ",", "H.", "Zhang", ",", "Y.J.", "Ren", ",", "P.H.", "Shang", ",", "Y.", "Zhu", ",", "Y.C.", "Liang", ",", "R.C.", "Guan", ",", "D.", "Xu", ",", "(", "2019", ")", ",", ",", "21", "(", "5", ")", ":", "e12957", "."],
"ner": [
{"id-start": 3, "id-end": 5, "entity-type": "product"},
{"id-start": 10, "id-end": 11, "entity-type": "field"},
{"id-start": 13, "id-end": 14, "entity-type": "task"},
{"id-start": 16, "id-end": 17, "entity-type": "task"},
{"id-start": 21, "id-end": 23, "entity-type": "task"},
{"id-start": 26, "id-end": 27, "entity-type": "field"},
{"id-start": 28, "id-end": 29, "entity-type": "researcher"},
{"id-start": 31, "id-end": 32, "entity-type": "researcher"},
{"id-start": 34, "id-end": 35, "entity-type": "researcher"},
{"id-start": 37, "id-end": 38, "entity-type": "researcher"},
{"id-start": 40, "id-end": 41, "entity-type": "researcher"},
{"id-start": 43, "id-end": 44, "entity-type": "researcher"},
{"id-start": 46, "id-end": 47, "entity-type": "researcher"},
{"id-start": 49, "id-end": 50, "entity-type": "researcher"}
],
"relations": [
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 10, "id_2-end": 11, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 10, "id_2-end": 11, "relation-type": "usage", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 13, "id_2-end": 14, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 13, "id_2-end": 14, "relation-type": "usage", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 16, "id_2-end": 17, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 16, "id_2-end": 17, "relation-type": "usage", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 26, "id_2-end": 27, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 26, "id_2-end": 27, "relation-type": "usage", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 21, "id_1-end": 23, "id_2-start": 16, "id_2-end": 17, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 21, "id_1-end": 23, "id_2-start": 16, "id_2-end": 17, "relation-type": "type-of", "Exp": "", "Un": False, "SA": False}
]
}
Data Fields
The data fields are the same among all splits.
doc_key
: the instance id of this sentence, astring
feature.sentence
: the list of tokens of this sentence, obtained with spaCy, alist
ofstring
features.ner
: the list of named entities in this sentence, alist
ofdict
features.id-start
: the start index of the entity, aint
feature.id-end
: the end index of the entity, aint
feature.entity-type
: the type of the entity, astring
feature.
relations
: the list of relations in this sentence, alist
ofdict
features.id_1-start
: the start index of the first entity, aint
feature.id_1-end
: the end index of the first entity, aint
feature.id_2-start
: the start index of the second entity, aint
feature.id_2-end
: the end index of the second entity, aint
feature.relation-type
: the type of the relation, astring
feature.Exp
: the explanation of the relation type assigned, astring
feature.Un
: uncertainty of the annotator, abool
feature.SA
: existence of syntax ambiguity which poses a challenge for the annotator, abool
feature.
Data Splits
Sentences
Train | Dev | Test | Total | |
---|---|---|---|---|
news | 164 | 350 | 400 | 914 |
politics | 101 | 350 | 400 | 851 |
science | 103 | 351 | 400 | 854 |
music | 100 | 350 | 399 | 849 |
literature | 100 | 400 | 416 | 916 |
ai | 100 | 350 | 431 | 881 |
------------ | ------- | ------- | ------- | ------- |
total | 668 | 2,151 | 2,46 | 5,265 |
Relations
Train | Dev | Test | Total | |
---|---|---|---|---|
news | 175 | 300 | 396 | 871 |
politics | 502 | 1,616 | 1,831 | 3,949 |
science | 355 | 1,340 | 1,393 | 3,088 |
music | 496 | 1,861 | 2,333 | 4,690 |
literature | 397 | 1,539 | 1,591 | 3,527 |
ai | 350 | 1,006 | 1,127 | 2,483 |
------------ | ------- | ------- | ------- | ------- |
total | 2,275 | 7,662 | 8,671 | 18,608 |
Dataset Creation
Curation Rationale
Source Data
Initial Data Collection and Normalization
Who are the source language producers?
Annotations
Annotation process
Who are the annotators?
Personal and Sensitive Information
Considerations for Using the Data
Social Impact of Dataset
Discussion of Biases
Other Known Limitations
Additional Information
Dataset Curators
Licensing Information
Citation Information
@inproceedings{bassignana-plank-2022-crossre,
title = "Cross{RE}: A {C}ross-{D}omain {D}ataset for {R}elation {E}xtraction",
author = "Bassignana, Elisa and Plank, Barbara",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
year = "2022",
publisher = "Association for Computational Linguistics"
}
Contributions
Thanks to @phucdev for adding this dataset.