Datasets:

Languages:
English
ArXiv:
License:
File size: 9,303 Bytes
d03ae21
 
e1333d2
 
 
 
 
 
 
 
 
 
 
e1dec9f
 
6ed1c82
6c4a1ad
 
e1dec9f
e960cbd
e1dec9f
 
 
 
 
 
e960cbd
6ed1c82
d515a29
 
 
50194fe
d515a29
e1dec9f
99cf751
e1dec9f
 
 
 
 
 
 
 
 
d515a29
e1dec9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ed1c82
950d463
6ed1c82
950d463
 
 
 
 
e1dec9f
 
d515a29
6ed1c82
d515a29
6ed1c82
99cf751
6ed1c82
d515a29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1dec9f
 
6ed1c82
d515a29
e1dec9f
 
 
 
 
 
d515a29
 
 
 
 
6ed1c82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d515a29
ed295c0
d515a29
6ed1c82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
---
license: apache-2.0
task_categories:
- text-generation
- summarization
language:
- en
tags:
- Pretraining
- Interleaved
- Reasoning
size_categories:
- 1M<n<10M
---

# Multimodal-Textbook-6.5M
<img src="./src/logo.png" alt="Image" style="width: 900px;">    


[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2501.00958) [![Project](https://img.shields.io/badge/Project-Website-blue.svg)](https://multimodal-interleaved-textbook.github.io/) [![GitHub](https://img.shields.io/badge/GitHub-Code-181717?logo=github)](https://github.com/DAMO-NLP-SG/multimodal_textbook/tree/master)




## Overview

This dataset is for ["2.5 Years in Class: A Multimodal Textbook for Vision-Language Pretraining"](https://arxiv.org/abs/2501.00958), containing 6.5M images interleaving with 0.8B text from instructional videos.

- It contains **pre-training corpus using interleaved image-text format**. Specifically, our multimodal-textbook includes **6.5M keyframes** extracted from instructional videos, interleaving with 0.8B **ASR texts**.
- All the images and text are extracted from online instructional videos (22,000 class hours), covering multiple fundamental subjects, e.g., mathematics, physics, and chemistry. 
- Our textbook corpus providing a more coherent context and richer knowledge for image-text aligning. 
- Our code can be found in [Multimodal-Textbook](https://github.com/DAMO-NLP-SG/multimodal_textbook/tree/master).


Note: We have uploaded the annotation file (`./multimodal_textbook.json`), which contains processed asr and ocr texts. Keyframes (`./dataset_images_interval_7.tar.gz`) are still being processed and uploading due to their large size (be split into 20 sub-files). For more details, please refer to [Using Our Dataset](#using-our-dataset)


<img src="./src/page_fig.png" alt="Image" style="width: 900px;">  




## Visualize Our Textbook   

Due to the large size of the dataset (our complete textbook dataset is 11GB for JSON files and 0.7TB for images), we sampled 100 samples and the corresponding images and stored them in the `example_data` folder: `./example_data/textbook_sample_100.json`.

Each sample is stored in dict format as follows:
```
[
{'images':  [keyframe1, None, keyframe2, None, keyframe3, None,.....],
 'texts':   [None,      asr1,  None,      asr2, None,     asr3,.....],
 'text_ocr_list':  [None, asr1+ocr1,  None, asr2+ocr2, None, asr3+ocr3,.....],
 'metadata': [...],
 'image_num': 15,
 'text_num': 425,
 'token_num': 9065},
 ....
]
```
Just like [OBELICS](https://github.com/huggingface/OBELICS), the "images" and "texts" are arranged interleavely: 
- "Images" list contains multiple keyframes and "None", where "None" represents that the current position is text. 
- "texts" list contain multiple asr text. The position of "None" in "texts" list is image.
- "text_ocr_list": In addition to asr text, "text_ocr_list" also includes OCR text.
- "image_num", "text_num", "token_num": respectively represent the number of images, the number of asr text tokens, and the estimated total number of tokens in this sample.


To view our dataset more conveniently, we have written a jupyter notebook: `./llava/dataset/show_interleaved_dataset.ipynb`

```
cd example_data
show_interleaved_dataset.ipynb
```
In the notebook, you can see keyframes interleaving with text.


## Dataset Statistics
We utilize GPT-4o to synthesize our knowledge taxonomy with 3915 knowledge points across 6 subjects, which enabled us to automatically collect 159K English instructional videos based on this taxonomy. 

Following our video-totextbook pipeline, we filter 53% low-quality or repetitive videos and retain 75K videos (22,697 class hours) with an average duration of 18 minutes. 

Then we extract 6.5M keyframes and 0.75B text (ASR+OCR) tokens from these videos. To enhance training efficiency, we concatenate multiple video clips into a single sample, producing a total of 610K interleaved samples. Each sample contains an average of 10.7 keyframes and 1,230 text tokens. The detailed statistics for each subject are shown as follows:

<img src="./src/table.png" alt="Image" style="width: 900px;">    


## Using Our Dataset
### Dataset
We provide the json file and corresponding images folder for textbook: 
- Dataset json-file: `./multimodal_textbook.json` (610k samples ~ 11GB)
- Dataset image_folder: `./dataset_images_interval_7.tar.gz` (6.5M image ~ 600GB)  (**Due to its large size, we split it into 20 sub-files, and it is still being processed and will be uploaded soon.**)
- videometa_data: `video_meta_data/video_meta_data1.json` and `video_meta_data/video_meta_data2.json` represent the meta information of crawled videos, including video vid, title, description, duration, language, and searched knowledge points. `multimodal_textbook_meta_data.json.zip` records the textbook in its original format, not in the OBELICS format.

Each sample has approximately 10.7 images and 1927 text tokens. After you download and unzip the folder, you need to replace the each image path in json file (`/mnt/workspace/zwq_data/interleaved_dataset/`) with your personal image folder path.

```
"images": [
            "/mnt/workspace/zwq_data/interleaved_dataset/dataset_images_interval_7/-1uixJ1V-As/-1uixJ1V-As@0.0_10.0#1.jpg",
            null,  
            "/mnt/workspace/zwq_data/interleaved_dataset/dataset_images_interval_7/-1uixJ1V-As/-1uixJ1V-As@10.0_55.0#6.jpg",
            null,
            ......
        ],
        "texts": [
            null,
            " Hi everyone, and welcome to another lesson in our Eureka Tips for computers series.",
            null,
            " I'm actually trying to use the number line to find the sum for each. So to start I'm going to use the paint tool to demonstrate. Let's use the number line for four plus five. We're going to start at four then we're going to count up five. One two three four five. That equals nine. Now let's do three plus six for the next one.",
            ....
        ],
```



### Naming Format for keyframe  

For each keyframe, its naming format rule is:   
`video id@start-time_end-time#keyframe-number.jpg`.   
For example, the path and file name of a keyframe is   
`-1uixJ1V-As/-1uixJ1V-As@10.0_55.0#2.jpg`.   

This means that this image is extracted from the video (`-1uixJ1V-As`), more specifically, it is the second keyframe (#2) in the video clip from 10.0 to 55.0 seconds. You can access the original video through [https://www.youtube.com/watch?v=-1uixJ1V-As](https://www.youtube.com/watch?v=-1uixJ1V-As).




### MetaData of Instructional Video
The format of the `video_meta_data/video_meta_data1.json`: 
```
    {
        "file_path": xxx,
        "file_size (MB)": 85.54160022735596,
        "file_name": "-r7-s1z3lFY.mp4",
        "video_duration": 0,
        "unique": true,
        "asr_path": xxxx,
        "asr_len": 2990,
        "caption_path": xxx,
        "caption_len": 0,
        "search_keyword": "1.3B parameter size models comparison",
        "title": "DeepSeek Coder LLM | A Revolutionary Coder Model",
        "desc": "In this video, we are going to test out Deepseek Coder, a coding LLM.....,
        "llm_response": " The video appears to be a detailed and technical analysis of DeepSeek Coder LLM..... ###Score: 10###",
        "language": "en",
        "asr is repetive": false,
        "deepseek_score": 10,
        "llama_score": 2,
        "deepseek_score long context": 10
    },
```

In addition, the `multimodal_textbook_meta_data.json.zip` records the textbook in video clip-level. It is stored with "video clip" as a dict. Each sample includes multiple consecutive video clips from the same long video. Sometimes one sample may also include video clips from different long videos. When a long video ends, it will store `End of a Video`.

```
{'token_num': 1657,
 'conversations': [
    {
        'vid': video id-1,
        'clip_path': the path of video clip,
        'asr': ASR transcribed from audio,
        'extracted_frames': Extract keyframe sequences according to time intervals.,
        'image_tokens': xxx,
        'token_num': xxx,
        'refined_asr': Refine the original ASR,
        'ocr_internvl_8b': OCR obtained using internvl_8b,
        'ocr_image': the image does OCR come from,
        'ocr_internvl_8b_deduplicates': xxx,
        'keyframe_ssim': Keyframe sequence extracted according to SSIM algorithm.,
        'asr_token_num': xxx,
        'ocr_qwen2_vl_72b': 'OCR obtained using qwen2_vl_72b'
   },
   {
        'vid': 'End of a Video',
        'clip_path': xxxx,
        'image_tokens': 0,
        'token_num': 0
   },
   {
        'vid': video id-2,
        'clip_path': the path of video clip,
        'asr': ASR transcribed from audio,
        'extracted_frames': Extract keyframe sequences according to time intervals.,
        'image_tokens': xxx,
        'token_num': xxx,
        'refined_asr': Refine the original ASR,
        'ocr_internvl_8b': OCR obtained using internvl_8b,
        'ocr_image': the image does OCR come from,
        'ocr_internvl_8b_deduplicates': xxx,
        'keyframe_ssim': Keyframe sequence extracted according to SSIM algorithm.,
        'asr_token_num': xxx,
        'ocr_qwen2_vl_72b': 'OCR obtained using qwen2_vl_72b'
   },
    ....
   ]
}
```