configs:
- config_name: hotpotqa-corpus
data_files:
- split: train
path: hotpotqa/corpus/*
- config_name: hotpotqa-queries
data_files:
- split: train
path: hotpotqa/queries/train.parquet
- split: dev
path: hotpotqa/queries/dev.parquet
- split: test
path: hotpotqa/queries/test.parquet
- config_name: hotpotqa-qrels
data_files:
- split: train
path: hotpotqa/qrels/train.parquet
- split: dev
path: hotpotqa/qrels/dev.parquet
- split: test
path: hotpotqa/qrels/test.parquet
- config_name: msmarco-corpus
data_files:
- split: train
path: msmarco/corpus/*
- config_name: msmarco-queries
data_files:
- split: train
path: msmarco/queries/train.parquet
- split: dev
path: msmarco/queries/dev.parquet
- config_name: msmarco-qrels
data_files:
- split: train
path: msmarco/qrels/train.parquet
- split: dev
path: msmarco/qrels/dev.parquet
- config_name: nfcorpus-corpus
data_files:
- split: train
path: nfcorpus/corpus/*
- config_name: nfcorpus-queries
data_files:
- split: train
path: nfcorpus/queries/train.parquet
- split: dev
path: nfcorpus/queries/dev.parquet
- split: test
path: nfcorpus/queries/test.parquet
- config_name: nfcorpus-qrels
data_files:
- split: train
path: nfcorpus/qrels/train.parquet
- split: dev
path: nfcorpus/qrels/dev.parquet
- split: test
path: nfcorpus/qrels/test.parquet
BEIR embeddings with Cohere embed-english-v3.0 model
This datasets contains all query & document embeddings for BEIR, embedded with the Cohere embed-english-v3.0 embedding model.
Overview of datasets
This repository hosts all 18 datasets from BEIR, including query and document embeddings. The following table gives an overview of the available datasets. See the next section how to load the individual datasets.
Dataset | nDCG@10 | #Documents |
---|---|---|
arguana | 53.98 | 8,674 |
bioasq | 45.66 | 14,914,603 |
climate-fever | 25.90 | 5,416,593 |
cqadupstack-android | 50.01 | 22,998 |
cqadupstack-english | 49.09 | 40,221 |
cqadupstack-gaming | 60.50 | 45,301 |
cqadupstack-gis | 39.17 | 37,637 |
cqadupstack-mathematica | 30.38 | 16,705 |
cqadupstack-physics | 43.82 | 38,316 |
cqadupstack-programmers | 43.67 | 32,176 |
cqadupstack-stats | 35.23 | 42,269 |
cqadupstack-text | 30.84 | 68,184 |
cqadupstack-unix | 40.59 | 47,382 |
cqadupstack-webmasters | 40.68 | 17,405 |
cqadupstack-wordpress | 34.26 | 48,605 |
fever | 89.00 | 5,416,568 |
fiqa | 42.14 | 57,638 |
hotpotqa | 70.72 | 5,233,329 |
msmarco | 42.86 | 8,841,823 |
nfcorpus | 38.63 | 3,633 |
nq | 61.62 | 2,681,468 |
quora | 88.72 | 522,931 |
robust04 | 54.06 | 528,155 |
scidocs | 20.34 | 25,657 |
scifact | 71.81 | 5,183 |
signal1m | 26.32 | 2,866,316 |
trec-covid | 81.78 | 171,332 |
trec-news | 50.42 | 594,977 |
webis-touche2020 | 32.64 | 382,545 |
Notes:
- arguana: The task of arguana is to find for a given argument (e.g.
Being vegetarian helps the environment ...
), an argument that refutes it (e.g.Vegetarian doesn't have an impact on the environment
). Naturally, embedding models work by finding the most similar texts, hence for the given argument it would find similar arguments first that support thatvegetarian helps the environment
, which would be treated here as non-relevant. By special embedding model prompting, the model can be steered to find arguments that refute the query. This will improve the nDCG@10 score from 53.98 to 61.5. - climate-fever: The task is to find evidence that support or refute a claim. As with arguana, with the default mode, the model will find the evidence primarily supporting the claim. By embedding model prompting, we can tell the model to find support and contra evidence for a claim. This improves the nDCG@10 score to 38.4.
- Quora: As the corpus consists of question, they have been encoded with the
input_type='search_query'
in order to find similar/duplicate questions. - cqadupstack: The datasets consists of several sub-datasets, where the nDCG@10 scores will be averaged in BEIR.
Loading the dataset
Loading the document embeddings
The corpus
split contains all document embeddings of the corpus.
You can either load the dataset like this:
from datasets import load_dataset
dataset_name = "hotpotqa"
docs = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-corpus", split="train")
Or you can also stream it without downloading it before:
from datasets import load_dataset
dataset_name = "hotpotqa"
docs = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-corpus", split="train", streaming=True)
for doc in docs:
doc_id = doc['_id']
title = doc['title']
text = doc['text']
emb = doc['emb']
Note, depending on the dataset size, the corpus split can be quite large.
Loading the query embeddings
The queries
split contains all query embeddings. There might be up to three splits: train
, dev
, and test
, depending which splits are available in BEIR. Evaluation is performed on the test
split.
You can load the dataset like this:
from datasets import load_dataset
dataset_name = "hotpotqa"
queries = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-queries", split="test")
for query in queries:
query_id = query['_id']
text = query['text']
emb = query['emb']
Loading the qrels
The qrels
split contains the query relevance annotation, i.e., it contains the relevance score for (query, document) pairs.
You can load the dataset like this:
from datasets import load_dataset
dataset_name = "hotpotqa"
qrels = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-qrels", split="test")
for qrel in qrels:
query_id = qrel['query_id']
corpus_id = qrel['corpus_id']
score = qrel['score']
Search
The following shows an example, how the dataset can be used to build a semantic search application.
Get your API key from cohere.com and start using this dataset.
#Run: pip install cohere datasets torch
from datasets import load_dataset
import torch
import cohere
dataset_name = "hotpotqa"
co = cohere.Client("<<COHERE_API_KEY>>") # Add your cohere API key from www.cohere.com
#Load at max 1000 documents + embeddings
max_docs = 1000
docs_stream = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-corpus", split="train", streaming=True)
docs = []
doc_embeddings = []
for doc in docs_stream:
docs.append(doc)
doc_embeddings.append(doc['emb'])
if len(docs) >= max_docs:
break
doc_embeddings = torch.tensor(doc_embeddings)
query = 'What is an abstract' #Your query
response = co.embed(texts=[query], model='embed-english-v3.0', input_type='search_query')
query_embedding = response.embeddings
query_embedding = torch.tensor(query_embedding)
# Compute dot score between query embedding and document embeddings
dot_scores = torch.mm(query_embedding, doc_embeddings.transpose(0, 1))
top_k = torch.topk(dot_scores, k=3)
# Print results
print("Query:", query)
for doc_id in top_k.indices[0].tolist():
print(docs[doc_id]['title'])
print(docs[doc_id]['text'], "\n")
Running evaluations
This dataset allows to reproduce the BEIR performance results and to compute nDCG@10, Recall@10, and Accuracy@3.
You must have beir
, faiss
, numpy
, and datasets
installed. The following scripts loads all files, runs search and computes the search quality metrices.
import numpy as np
import faiss
from beir.retrieval.evaluation import EvaluateRetrieval
import time
from datasets import load_dataset
def faiss_search(index, queries_emb, k=[10, 100]):
start_time = time.time()
faiss_scores, faiss_doc_ids = index.search(queries_emb, max(k))
print(f"Search took {(time.time()-start_time):.2f} sec")
query2id = {idx: qid for idx, qid in enumerate(query_ids)}
doc2id = {idx: cid for idx, cid in enumerate(docs_ids)}
faiss_results = {}
for idx in range(0, len(faiss_scores)):
qid = query2id[idx]
doc_scores = {doc2id[doc_id]: score.item() for doc_id, score in zip(faiss_doc_ids[idx], faiss_scores[idx])}
faiss_results[qid] = doc_scores
ndcg, map_score, recall, precision = EvaluateRetrieval.evaluate(qrels, faiss_results, k)
acc = EvaluateRetrieval.evaluate_custom(qrels, faiss_results, [3, 5, 10], metric="acc")
print(ndcg)
print(recall)
print(acc)
dataset_name = "<<DATASET_NAME>>"
dataset_split = "test"
num_dim = 1024
#Load qrels
df = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-qrels", split=dataset_split)
qrels = {}
for row in df:
qid = row['query_id']
cid = row['corpus_id']
if row['score'] > 0:
if qid not in qrels:
qrels[qid] = {}
qrels[qid][cid] = row['score']
#Load queries
df = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-queries", split=dataset_split)
query_ids = df['_id']
query_embs = np.asarray(df['emb'])
print("Query embeddings:", query_embs.shape)
#Load corpus
df = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-corpus", split="train")
docs_ids = df['_id']
#Build index
print("Build index. This might take some time")
index = faiss.IndexFlatIP(num_dim)
index.add(np.asarray(df.to_pandas()['emb'].tolist()))
#Run and evaluate search
print("Seach on index")
faiss_search(index, query_embs)
Notes
- This dataset was created with
datasets==2.15.0
. Make sure to use this or a newer version of the datasets library.