File size: 11,376 Bytes
4c05985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3202fb
 
 
 
 
 
4c05985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3202fb
 
 
4c05985
 
 
 
 
 
 
 
d3202fb
4c05985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3202fb
4c05985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3202fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c05985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# coding=utf-8
# Copyright 2022 The PolyAI and HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import json
import numpy as np
import datasets

logger = datasets.logging.get_logger(__name__)

datasets.Image()
""" VTQA Dataset"""

_CITATION = """\
@inproceedings{chen2024vtqa,
  title={VTQA: Visual Text Question Answering via Entity Alignment and Cross-Media Reasoning},
  author={Chen, Kang and Wu, Xiangqian},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={27218--27227},
  year={2024}
}
"""

_DESCRIPTION = """\
VTQA is a new dataset containing open-ended questions about image-text pairs. 
These questions require multimedia entity alignment, multi-step reasoning and open-ended answer generation.
"""

_HOMEPAGE_URL = "https://visual-text-qa.github.io/"

_LICENSE = "The annotations in this dataset belong to the VTQA Consortium and are licensed under a Creative Commons Attribution NonCommercial NoDerivs 4.0 International License"


_ALL_CONFIGS = sorted(
    [
        "zh-image",
        "zh-region",
        "zh-grid",
        "en-image",
        "en-region",
        "en-grid",
        "en",
        "zh",
        "image",
        "region",
        "grid",
    ]
)

_BASE_IMAGE_FEATURES = {
    "image": datasets.Image(),
    "region": datasets.Value("string"),
    "grid": datasets.Value("string"),
}

_BASE_TEXT_FEATURES = {
    "raw": {
        "en": datasets.Value("string"),
        "zh": datasets.Value("string"),
    },
    "cws": {
        "en": [datasets.Value("string")],
        "zh": [datasets.Value("string")],
    },
}

_BASE_ANSWER_FEATURES = {
    "answer_type": datasets.Value("string"),
    "answer": {
        "en": datasets.Value("string"),
        "zh": datasets.Value("string"),
    },
}


_DATA_URL = "data"


class VTQAConfig(datasets.BuilderConfig):
    """BuilderConfig for VTQA."""

    def __init__(
        self, data_url: str = None, use_cws=False, local_url=None, get_test_split=False, **kwargs
    ):
        super(VTQAConfig, self).__init__(
            version=datasets.Version("1.0.0", ""),
            description=self.description,
            **kwargs,
        )
        self.data_url = _DATA_URL if data_url is None else data_url
        self.use_cws = use_cws
        self.local_url = local_url
        self.get_test_split = get_test_split

    @property
    def features(self):
        if self.name == "all":
            lang, image_type = "all", "all"
        elif "-" in self.name:
            lang, image_type = self.name.split("-")
        elif self.name in ["en", "zh"]:
            lang, image_type = self.name, "all"
        elif self.name in ["image", "region", "grid"]:
            lang, image_type = "all", self.name
        self.lang, self.image_type = lang, image_type

        btf = _BASE_TEXT_FEATURES["cws"] if self.use_cws else _BASE_TEXT_FEATURES["raw"]
        baf = {
            "answer_type": _BASE_ANSWER_FEATURES["answer_type"],
            "answer": (
                _BASE_ANSWER_FEATURES["answer"]
                if lang == "all"
                else _BASE_ANSWER_FEATURES["answer"][lang]
            ),
        }
        dataset_features = datasets.Features(
            {
                "question": (btf if lang == "all" else btf[lang]),
                "question_id": datasets.Value("int64"),
                "context": (btf if lang == "all" else btf[lang]),
                "image_id": datasets.Value("int64"),
                "image_path": (
                    _BASE_IMAGE_FEATURES
                    if image_type == "all"
                    else _BASE_IMAGE_FEATURES[image_type]
                ),
                "answers": [baf],
            }
        )
        return dataset_features


def _build_config(name, use_cws=False, local_url=None):
    return VTQAConfig(
        name=name,
        data_url=_DATA_URL,
        use_cws=use_cws,
        local_url=local_url,
    )


class VTQA(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIG_CLASS = VTQAConfig
    DEFAULT_WRITER_BATCH_SIZE = 1000
    BUILDER_CONFIGS = [_build_config(name) for name in _ALL_CONFIGS + ["all"]]

    def _info(self):

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=self.config.features,
            homepage=_HOMEPAGE_URL,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        lang, image_type = self.config.lang, self.config.image_type

        def _get_url(file_name):
            if self.config.local_url is None:
                return dl_manager.download_and_extract(
                    os.path.join(self.config.data_url, f"{file_name}.zip")
                )
            else:
                return os.path.join(self.config.local_url, f"{file_name}")

        annotation_dir = _get_url("annotations")
        image_dir, region_dir, grid_dir = None, None, None
        if image_type in ["image", "all"]:
            image_dir = _get_url("image")
        if image_type in ["region", "all"]:
            region_dir = _get_url("region")
        if image_type in ["grid", "all"]:
            grid_dir = _get_url("grid")

        if self.config.use_cws:
            cws_supp_dir = _get_url("cws_supp")
            self.cws_supp_dir = cws_supp_dir

        datasets_split = [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(annotation_dir, "train.json"),
                    "image_dir": (
                        os.path.join(image_dir, "train") if image_dir else None
                    ),
                    "region_dir": (
                        os.path.join(region_dir, "train") if region_dir else None
                    ),
                    "grid_dir": os.path.join(grid_dir, "train") if grid_dir else None,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": os.path.join(annotation_dir, "val.json"),
                    "image_dir": (
                        os.path.join(image_dir, "val") if image_dir else None
                    ),
                    "region_dir": (
                        os.path.join(region_dir, "val") if region_dir else None
                    ),
                    "grid_dir": os.path.join(grid_dir, "val") if grid_dir else None,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split("test_dev"),
                gen_kwargs={
                    "filepath": os.path.join(annotation_dir, "test_dev.json"),
                    "image_dir": (
                        os.path.join(image_dir, "test_dev") if image_dir else None
                    ),
                    "region_dir": (
                        os.path.join(region_dir, "test_dev") if region_dir else None
                    ),
                    "grid_dir": (
                        os.path.join(grid_dir, "test_dev") if grid_dir else None
                    ),
                    "labeled": False,
                },
            ),
        ]

        if self.config.get_test_split:
            return datasets_split + [
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "filepath": os.path.join(annotation_dir, "test.json"),
                        "image_dir": (
                            os.path.join(image_dir, "test") if image_dir else None
                        ),
                        "region_dir": (
                            os.path.join(region_dir, "test") if region_dir else None
                        ),
                        "grid_dir": (
                            os.path.join(grid_dir, "test") if grid_dir else None
                        ),
                        "labeled": False,
                    },
                )
            ]
        else:
            return datasets_split

    def _generate_examples(
        self, filepath, image_dir=None, region_dir=None, grid_dir=None, labeled=True
    ):
        lang, image_type = self.config.lang, self.config.image_type
        use_cws = "cws" if self.config.use_cws else "raw"
        """Yields examples as (key, example) tuples."""
        with open(filepath, encoding="utf-8") as f:
            vtqa = json.load(f)
            for id_, d in enumerate(vtqa):
                text_dict = {
                    "question": (
                        d["question"][use_cws]
                        if lang == "all"
                        else d["question"][use_cws][lang]
                    ),
                    "context": (
                        d["context"][use_cws]
                        if lang == "all"
                        else d["context"][use_cws][lang]
                    ),
                }
                image_dict = {}
                if image_dir is not None:
                    image_dict["image"] = os.path.join(
                        image_dir, d["image_name"]["image"]
                    )
                if region_dir is not None:
                    image_dict["region"] = os.path.join(
                        region_dir, d["image_name"]["region"]
                    )
                if grid_dir is not None:
                    image_dict["grid"] = os.path.join(grid_dir, d["image_name"]["grid"])

                if labeled:

                    yield id_, {
                        "question_id": d["question_id"],
                        "image_id": d["image_id"],
                        "answers": [
                            {
                                "answer_type": a["answer_type"],
                                "answer": (
                                    a["answer"] if lang == "all" else a["answer"][lang]
                                ),
                            }
                            for a in d["answers"]
                        ],
                        **text_dict,
                        "image_path": (
                            image_dict
                            if image_type == "all"
                            else image_dict[image_type]
                        ),
                    }
                else:
                    yield id_, {
                        "question_id": d["question_id"],
                        "image_id": d["image_id"],
                        "answers": None,
                        **text_dict,
                        "image_path": (
                            image_dict
                            if image_type == "all"
                            else image_dict[image_type]
                        ),
                    }