Datasets:
File size: 5,152 Bytes
e61ab46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""VCTK dataset."""
import os
import re
import datasets
_CITATION = """\
@inproceedings{Veaux2017CSTRVC,
title = {CSTR VCTK Corpus: English Multi-speaker Corpus for CSTR Voice Cloning Toolkit},
author = {Christophe Veaux and Junichi Yamagishi and Kirsten MacDonald},
year = 2017
}
"""
_DESCRIPTION = """\
The CSTR VCTK Corpus includes speech data uttered by 110 English speakers with various accents.
"""
_URL = "https://datashare.ed.ac.uk/handle/10283/3443"
_DL_URL = "https://datashare.is.ed.ac.uk/bitstream/handle/10283/3443/VCTK-Corpus-0.92.zip"
class VCTK(datasets.GeneratorBasedBuilder):
"""VCTK dataset."""
VERSION = datasets.Version("0.9.2")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="main", version=VERSION, description="VCTK dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"speaker_id": datasets.Value("string"),
"audio": datasets.features.Audio(sampling_rate=48_000),
"file": datasets.Value("string"),
"text": datasets.Value("string"),
"text_id": datasets.Value("string"),
"age": datasets.Value("string"),
"gender": datasets.Value("string"),
"accent": datasets.Value("string"),
"region": datasets.Value("string"),
"comment": datasets.Value("string"),
}
),
supervised_keys=("file", "text"),
homepage=_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
root_path = dl_manager.download_and_extract(_DL_URL)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"root_path": root_path}),
]
def _generate_examples(self, root_path):
"""Generate examples from the VCTK corpus root path."""
meta_path = os.path.join(root_path, "speaker-info.txt")
txt_root = os.path.join(root_path, "txt")
wav_root = os.path.join(root_path, "wav48_silence_trimmed")
# NOTE: "comment" is handled separately in logic below
fields = ["speaker_id", "age", "gender", "accent", "region"]
key = 0
with open(meta_path, encoding="utf-8") as meta_file:
_ = next(iter(meta_file))
for line in meta_file:
data = {}
line = line.strip()
search = re.search(r"\(.*\)", line)
if search is None:
data["comment"] = ""
else:
start, _ = search.span()
data["comment"] = line[start:]
line = line[:start]
values = line.split()
for i, field in enumerate(fields):
if field == "region":
data[field] = " ".join(values[i:])
else:
data[field] = values[i] if i < len(values) else ""
speaker_id = data["speaker_id"]
speaker_txt_path = os.path.join(txt_root, speaker_id)
speaker_wav_path = os.path.join(wav_root, speaker_id)
# NOTE: p315 does not have text
if not os.path.exists(speaker_txt_path):
continue
for txt_file in sorted(os.listdir(speaker_txt_path)):
filename, _ = os.path.splitext(txt_file)
_, text_id = filename.split("_")
for i in [1, 2]:
wav_file = os.path.join(speaker_wav_path, f"{filename}_mic{i}.flac")
# NOTE: p280 does not have mic2 files
if not os.path.exists(wav_file):
continue
with open(os.path.join(speaker_txt_path, txt_file), encoding="utf-8") as text_file:
text = text_file.readline().strip()
more_data = {
"file": wav_file,
"audio": wav_file,
"text": text,
"text_id": text_id,
}
yield key, {**data, **more_data}
key += 1
|