File size: 17,222 Bytes
c4c4a36 6b5a512 f8cdee2 d98fc07 b4df3db 3c100e3 5bc8588 b4df3db f8cdee2 4d51483 f33eddc 6e3545d 3fa7197 33bfb85 4ecc757 21b6195 3bc32b7 08642e3 f3a5666 66e903e 2f4d88c f8cdee2 d98fc07 b4df3db 3c100e3 5bc8588 f8cdee2 4d51483 f33eddc 6e3545d 3fa7197 33bfb85 4ecc757 21b6195 3bc32b7 08642e3 f3a5666 66e903e 2f4d88c c4c4a36 490daab ffddd15 3b80002 c8051ae 0b8891c c8051ae 8a9c55d ffddd15 30cb9b7 0b8891c 30cb9b7 0b8891c 30cb9b7 0b8891c 30cb9b7 0b8891c 30cb9b7 0b8891c 30cb9b7 0b8891c 30cb9b7 0b8891c 30cb9b7 0b8891c 30cb9b7 0b8891c 30cb9b7 0b8891c 30cb9b7 0b8891c 30cb9b7 0b8891c 30cb9b7 dbb0c7c db6c105 b54ea1e 490daab ffddd15 490daab db6c105 490daab 67992ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 |
---
language:
- nl
size_categories:
- 10B<n<100B
task_categories:
- text-generation
- text2text-generation
pretty_name: Filtered CulturaX + Wikipedia for Dutch
dataset_info:
- config_name: 100M
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 738455828.5851797
num_examples: 1018200
- name: test
num_bytes: 7458534.414820259
num_examples: 10284
download_size: 411183119
dataset_size: 745914363.0
- config_name: 100k
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 745955.3074739829
num_examples: 1047
- name: test
num_bytes: 7124.692526017029
num_examples: 10
download_size: 366788
dataset_size: 753080.0
- config_name: 10B
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 66539945646.34457
num_examples: 40176566
- name: test
num_bytes: 105996030.65543362
num_examples: 64000
download_size: 42132184504
dataset_size: 66645941677.0
- config_name: 10M
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 76734151.72157606
num_examples: 139851
- name: test
num_bytes: 774743.2784239326
num_examples: 1412
download_size: 37995388
dataset_size: 77508895.0
- config_name: 10k
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 72048.30379746835
num_examples: 78
- name: test
num_bytes: 5896
num_examples: 1
download_size: 47197
dataset_size: 77944.30379746835
- config_name: 15B
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 99730049355.25276
num_examples: 59584123
- name: test
num_bytes: 107121206.74724333
num_examples: 64000
download_size: 63139415312
dataset_size: 99837170562.0
- config_name: 1B
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 6797502496.392602
num_examples: 5102360
- name: test
num_bytes: 68660322.60739774
num_examples: 51538
download_size: 4260450464
dataset_size: 6866162819.0
- config_name: 1M
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 7442665.619329753
num_examples: 10694
- name: test
num_bytes: 75164.38067024625
num_examples: 108
download_size: 3845466
dataset_size: 7517830.0
- config_name: 20B
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 132920704365.75093
num_examples: 78991679
- name: test
num_bytes: 107693939.24907027
num_examples: 64000
download_size: 84141456153
dataset_size: 133028398305.0
- config_name: 25B
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 166111586295.01904
num_examples: 98399236
- name: test
num_bytes: 108040894.98094498
num_examples: 64000
download_size: 105147418131
dataset_size: 166219627190.0
- config_name: 30B
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 199302582477.5805
num_examples: 117806793
- name: test
num_bytes: 108273597.41950662
num_examples: 64000
download_size: 126152714564
dataset_size: 199410856075.0
- config_name: 35B
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 232493644456.181
num_examples: 137214350
- name: test
num_bytes: 108440503.81899258
num_examples: 64000
download_size: 147149925109
dataset_size: 232602084960.0
- config_name: 40B
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 265684747781.7734
num_examples: 156621907
- name: test
num_bytes: 108566063.22660531
num_examples: 64000
download_size: 168152290262
dataset_size: 265793313845.0
- config_name: 45B
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 298875877641.391
num_examples: 176029463
- name: test
num_bytes: 108663946.60903454
num_examples: 64000
download_size: 189159571162
dataset_size: 298984541588.0
- config_name: 50B
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 332067028077.12775
num_examples: 195437020
- name: test
num_bytes: 108742395.87226707
num_examples: 64000
download_size: 210160621183
dataset_size: 332175770473.0
- config_name: 55B
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 365258192681.75964
num_examples: 214844577
- name: test
num_bytes: 108806676.24034382
num_examples: 64000
download_size: 231164757019
dataset_size: 365366999358.0
- config_name: 5B
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 33351938314.309906
num_examples: 20769009
- name: test
num_bytes: 102774477.69009268
num_examples: 64000
download_size: 21119808690
dataset_size: 33454712792.0
configs:
- config_name: 100M
data_files:
- split: train
path: 100M/train-*
- split: test
path: 100M/test-*
- config_name: 100k
data_files:
- split: train
path: 100k/train-*
- split: test
path: 100k/test-*
- config_name: 10B
data_files:
- split: train
path: 10B/train-*
- split: test
path: 10B/test-*
- config_name: 10M
data_files:
- split: train
path: 10M/train-*
- split: test
path: 10M/test-*
- config_name: 10k
data_files:
- split: train
path: 10k/train-*
- split: test
path: 10k/test-*
- config_name: 15B
data_files:
- split: train
path: 15B/train-*
- split: test
path: 15B/test-*
- config_name: 1B
data_files:
- split: train
path: 1B/train-*
- split: test
path: 1B/test-*
- config_name: 1M
data_files:
- split: train
path: 1M/train-*
- split: test
path: 1M/test-*
- config_name: 20B
data_files:
- split: train
path: 20B/train-*
- split: test
path: 20B/test-*
- config_name: 25B
data_files:
- split: train
path: 25B/train-*
- split: test
path: 25B/test-*
- config_name: 30B
data_files:
- split: train
path: 30B/train-*
- split: test
path: 30B/test-*
- config_name: 35B
data_files:
- split: train
path: 35B/train-*
- split: test
path: 35B/test-*
- config_name: 40B
data_files:
- split: train
path: 40B/train-*
- split: test
path: 40B/test-*
- config_name: 45B
data_files:
- split: train
path: 45B/train-*
- split: test
path: 45B/test-*
- config_name: 50B
data_files:
- split: train
path: 50B/train-*
- split: test
path: 50B/test-*
- config_name: 55B
data_files:
- split: train
path: 55B/train-*
- split: test
path: 55B/test-*
- config_name: 5B
data_files:
- split: train
path: 5B/train-*
- split: test
path: 5B/test-*
---
# Filtered CulturaX + Wikipedia for Dutch
This is a combined and filtered version of [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX) and [Wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia), only including Dutch. It is intended for the training of LLMs.
Different configs are available based on the number of tokens (see a section below with an overview). This can be useful if you want to know exactly how many tokens you have. Great for using as a streaming dataset, too. Tokens are counted as white-space tokens, so depending on your tokenizer, you'll likely end up with more tokens than indicated here.
Every config also has a test set (for validation) of 1% the total size of the dataset, minimally 1 max. 64k samples (~16M tokens).
Wikipedia and CulturaX were suffled before merging and the teset set creation was also shuffled. Priority is given to Wikipedia to prioritize knowledge-content, so the smaller configs will consist exclusively of Wikipedia and for the larger configs we augment with CulturaX. Every config builds further on the previous, so this means that every config contains the same data as the smaller ones and more HOWEVER their train/test splits are not the same, so test set of one config may overlap with samples for another training set. This is usually not a problem but just be aware that you do not train on one config's training set and test with another config's test set.
## Configs
### `10k` -- 79 samples -- 10,087 tokens
- ratio_wikipedia: 100.00%
- total_num_tokens: 10,087
- train_num_tokens: 9,205
- test_num_tokens: 882
- total_num_samples: 79
- train_num_samples: 78
- test_num_samples: 1
### `100k` -- 1,057 samples -- 100,075 tokens
- ratio_wikipedia: 100.00%
- total_num_tokens: 100,075
- train_num_tokens: 98,044
- test_num_tokens: 2,031
- total_num_samples: 1,057
- train_num_samples: 1,047
- test_num_samples: 10
### `1M` -- 10,802 samples -- 1,000,239 tokens
- ratio_wikipedia: 100.00%
- total_num_tokens: 1,000,239
- train_num_tokens: 991,119
- test_num_tokens: 9,120
- total_num_samples: 10,802
- train_num_samples: 10,694
- test_num_samples: 108
### `10M` -- 141,263 samples -- 10,000,022 tokens
- ratio_wikipedia: 100.00%
- total_num_tokens: 10,000,022
- train_num_tokens: 9,874,772
- test_num_tokens: 125,250
- total_num_samples: 141,263
- train_num_samples: 139,851
- test_num_samples: 1,412
### `100M` -- 1,028,484 samples -- 100,000,047 tokens
- ratio_wikipedia: 100.00%
- total_num_tokens: 100,000,047
- train_num_tokens: 99,013,372
- test_num_tokens: 986,675
- total_num_samples: 1,028,484
- train_num_samples: 1,018,200
- test_num_samples: 10,284
### `1B` -- 5,153,898 samples -- 1,000,000,187 tokens
- ratio_wikipedia: 61.21%
- total_num_tokens: 1,000,000,187
- train_num_tokens: 989,990,190
- test_num_tokens: 10,009,997
- total_num_samples: 5,153,898
- train_num_samples: 5,102,360
- test_num_samples: 51,538
### `5B` -- 20,833,009 samples -- 5,000,000,076 tokens
- ratio_wikipedia: 25.35%
- total_num_tokens: 5,000,000,076
- train_num_tokens: 4,984,493,654
- test_num_tokens: 15,506,422
- total_num_samples: 20,833,009
- train_num_samples: 20,769,009
- test_num_samples: 64,000
### `10B` -- 40,240,566 samples -- 10,000,000,115 tokens
- ratio_wikipedia: 18.41%
- total_num_tokens: 10,000,000,115
- train_num_tokens: 9,984,156,828
- test_num_tokens: 15,843,287
- total_num_samples: 40,240,566
- train_num_samples: 40,176,566
- test_num_samples: 64,000
### `15B` -- 59,648,123 samples -- 15,000,000,154 tokens
- ratio_wikipedia: 15.98%
- total_num_tokens: 15,000,000,154
- train_num_tokens: 14,983,970,518
- test_num_tokens: 16,029,636
- total_num_samples: 59,648,123
- train_num_samples: 59,584,123
- test_num_samples: 64,000
### `20B` -- 79,055,679 samples -- 20,000,000,009 tokens
- ratio_wikipedia: 14.75%
- total_num_tokens: 20,000,000,009
- train_num_tokens: 19,983,799,357
- test_num_tokens: 16,200,652
- total_num_samples: 79,055,679
- train_num_samples: 78,991,679
- test_num_samples: 64,000
### `25B` -- 98,463,236 samples -- 25,000,000,048 tokens
- ratio_wikipedia: 14.00%
- total_num_tokens: 25,000,000,048
- train_num_tokens: 24,983,765,326
- test_num_tokens: 16,234,722
- total_num_samples: 98,463,236
- train_num_samples: 98,399,236
- test_num_samples: 64,000
### `30B` -- 117,870,793 samples -- 30,000,000,087 tokens
- ratio_wikipedia: 13.50%
- total_num_tokens: 30,000,000,087
- train_num_tokens: 29,983,707,932
- test_num_tokens: 16,292,155
- total_num_samples: 117,870,793
- train_num_samples: 117,806,793
- test_num_samples: 64,000
### `35B` -- 137,278,350 samples -- 35,000,000,126 tokens
- ratio_wikipedia: 13.14%
- total_num_tokens: 35,000,000,126
- train_num_tokens: 34,983,914,739
- test_num_tokens: 16,085,387
- total_num_samples: 137,278,350
- train_num_samples: 137,214,350
- test_num_samples: 64,000
### `40B` -- 156,685,907 samples -- 40,000,000,165 tokens
- ratio_wikipedia: 12.87%
- total_num_tokens: 40,000,000,165
- train_num_tokens: 39,983,508,625
- test_num_tokens: 16,491,540
- total_num_samples: 156,685,907
- train_num_samples: 156,621,907
- test_num_samples: 64,000
### `45B` -- 176,093,463 samples -- 45,000,000,020 tokens
- ratio_wikipedia: 12.66%
- total_num_tokens: 45,000,000,020
- train_num_tokens: 44,983,608,118
- test_num_tokens: 16,391,902
- total_num_samples: 176,093,463
- train_num_samples: 176,029,463
- test_num_samples: 64,000
### `50B` -- 195,501,020 samples -- 50,000,000,059 tokens
- ratio_wikipedia: 12.49%
- total_num_tokens: 50,000,000,059
- train_num_tokens: 49,983,567,461
- test_num_tokens: 16,432,598
- total_num_samples: 195,501,020
- train_num_samples: 195,437,020
- test_num_samples: 64,000
### `55B` -- 214,908,577 samples -- 55,000,000,098 tokens
- ratio_wikipedia: 12.35%
- total_num_tokens: 55,000,000,098
- train_num_tokens: 54,983,723,278
- test_num_tokens: 16,276,820
- total_num_samples: 214,908,577
- train_num_samples: 214,844,577
- test_num_samples: 64,000
## Filtering
While CultruaX already has done a lot of filtering, some more filtering can be done to improve the quality of the corpus. These filters are described below.
The baseline ratios (punctuation, uppercase, digits) were calculated on the SONAR-500 corpus (excluding WRPEA WRPED WRUEA WRUED WRUEB).
**CulturaX**:
- removed documents that contain the text "rechten voorbehouden" or "rights reserved"
- remove documents whose URL contained "wikipedia.org" (because we include a cleaned version of Wikipedia ourselves)
- removed documents that contain a "bad word" (see the section below)
- removed documents that contain any non-latin characters. The idea is that "knowledge"-based information (e.g. original writing of a name) are allowed
when the data comes from Wikipedia, but not from any other webcrawl, to avoid unsollicited noise.
**CulturaX + Wikipedia**:
- removed documents where ratio of punctuation marks vs. non-whitespace characters is higher than 0.2
- removed documents where ratio of uppercase vs. non-whitespace characters is higher than 0.22
- removed documents where ratio of digits vs. non-whitespace characters is higher than 0.16
- removed documents where the average token length is < 2 or > 20
## Bad words
```python
BAD_PHRASES_DOC_LEVEL = {
# https://en.wikipedia.org/wiki/Dutch_profanity
"achterlijk",
"debiel",
"downie",
"idioot",
"kankerlijer",
"klere",
"kolere",
"minkukel",
"pestkop",
"pleuris",
"pleuritis",
"teringlijer",
"tyfuslijer",
"gadver",
"getver",
"godver",
"godskolere",
"godverork",
"graftak",
"kopvod",
"verdomme",
"anaalgeneraal",
"bitch",
"dikzak",
"flikker",
"fok",
"fuck",
"hoer",
"klootzak",
"klote",
"kreng",
"kringspiermusketier",
"kut",
"lamzak",
"lul",
"manwijf",
"matennaai",
"neuken",
"neuker",
"ouwehoer",
"reet",
"reetkever",
"reetridder",
"rotzak",
"schijt",
"shit",
"slet",
"slijmbal",
"slons",
"sodemieter",
"stoephoer",
"swaffel",
"teef",
"trut",
"tut",
"zak",
"uilskuiken",
"zeik",
"bamivreter",
"bosneger",
"neger",
"fransoos",
"geitenneuker",
"kaaskop",
"kakker",
"koelie",
"lijp",
"medelander",
"mocro",
"mof",
"nikker",
"poepchinees",
"roetmop",
"spaghettivreter",
"loempiavouwer",
"spanjool",
"spleetoog",
"tatta",
"tokkie",
"zandneger",
"zwartzak",
"halvezool",
"kenau",
"klootviool",
"knuppel",
"koekert",
"koekwaus",
"oelewapper",
"smeerlap",
"sukkel",
"sul",
"wappie",
"wijf",
"zooi",
# xxx (a.o. https://gitlab.com/yhavinga/c4nlpreproc/-/blob/master/clean/badwords_ennl.py?ref_type=heads)
"xxx",
"anal",
"blowjob",
"buttplug",
"cock",
"cunt",
"geil",
"sex", # Standaardnederlands = seks, maybe we catch some porn or socialmedia sites with this misspelling
"porn",
# extra
"nigger",
"nigga",
"hoerig",
"klojo",
}
```
## Config details
## License information
For CulturaX: https://huggingface.co/datasets/uonlp/CulturaX#license-information
For Wikipedia: https://huggingface.co/datasets/wikimedia/wikipedia#licensing-information |