Datasets:

ArXiv:
License:
File size: 16,252 Bytes
920e708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
feca7cf
920e708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c6c3cf
920e708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The SOCKET Datasets"""


import datasets


_CITATION = """
@misc{choi2023llms,
      title={Do LLMs Understand Social Knowledge? Evaluating the Sociability of Large Language Models with SocKET Benchmark}, 
      author={Minje Choi and Jiaxin Pei and Sagar Kumar and Chang Shu and David Jurgens},
      year={2023},
      eprint={2305.14938},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
"""

_DESCRIPTION = """\
A unified evaluation benchmark dataset for evaludating socialbility of NLP models.
"""

_HOMEPAGE = "TBD"

_LICENSE = ""

#set up url or the file dir here
URL = "https://huggingface.co/datasets/Blablablab/SOCKET/resolve/main/SOCKET_DATA/"

TASK_DICT = {
    'humor_sarcasm': [
        'hahackathon#humor_rating',
        'humor-pairs',
        'sarc',
        'tweet_irony',
        'hahackathon#is_humor',
    ],
    'offensive': [
        'contextual-abuse#IdentityDirectedAbuse',
        'contextual-abuse#PersonDirectedAbuse',
        'hahackathon#offense_rating',
        'hasbiasedimplication',
        'hateoffensive',
        'implicit-hate#explicit_hate',
        'implicit-hate#implicit_hate',
        'implicit-hate#incitement_hate',
        'implicit-hate#inferiority_hate',
        'implicit-hate#stereotypical_hate',
        'implicit-hate#threatening_hate',
        'implicit-hate#white_grievance_hate',
        'intentyn',
        'jigsaw#severe_toxic',
        'jigsaw#identity_hate',
        'jigsaw#threat',
        'jigsaw#obscene',
        'jigsaw#insult',
        'jigsaw#toxic',
        'offensiveyn',
        'sexyn',
        'talkdown-pairs',
        'toxic-span',
        'tweet_offensive'
    ],
    'sentiment_emotion': [
        'crowdflower',
        'dailydialog',
        'emobank#arousal',
        'emobank#dominance',
        'emobank#valence',
        'emotion-span',
        'empathy#distress',
        'empathy#distress_bin',
        'same-side-pairs',
        'sentitreebank',
        'tweet_emoji',
        'tweet_emotion',
        'tweet_sentiment'
    ],
    'social_factors': [
        'complaints',
        'empathy#empathy',
        'empathy#empathy_bin',
        'hayati_politeness',
        'questionintimacy',
        'stanfordpoliteness'
    ],
    'trustworthy': [
        'bragging#brag_achievement',
        'bragging#brag_action',
        'bragging#brag_possession',
        'bragging#brag_trait',
        'hypo-l',
        'neutralizing-bias-pairs',
        'propaganda-span',
        'rumor#rumor_bool',
        'two-to-lie#receiver_truth',
        'two-to-lie#sender_truth',
    ]
}

task2category = {}
for category, tasks in TASK_DICT.items():
    for task in tasks:
        task2category[task] = category

TASK_NAMES = []
for tasks in TASK_DICT.values():
    TASK_NAMES.extend(tasks)
TASK_NAMES = sorted(TASK_NAMES)

print(len(TASK_NAMES))
_URLs = {}
for task in TASK_NAMES:
    _URLs[task] = {}
    for s in ['train', 'test', 'val']:
        for t in ['text', 'labels']:
            task_url = '%s%s/%s_%s.txt'%(URL,task,s,t)
            task_url = task_url.replace('#','%23')
            _URLs[task][s + '_' + t] = task_url

class SOCKETConfig(datasets.BuilderConfig):
    def __init__(self, *args, type=None, sub_type=None, **kwargs):
        super().__init__(
            *args,
            name=f"{type}",
            **kwargs,
        )
        self.type = type
        self.sub_type = sub_type


class SOCKET(datasets.GeneratorBasedBuilder):
    """SOCKET Dataset."""

    BUILDER_CONFIGS = [
        SOCKETConfig(
            type=key,
            sub_type=None,
            version=datasets.Version("1.1.0"),
            description=f"This part of my dataset covers {key} part of the SocKET Dataset.",
        )
        for key in list(TASK_NAMES)
    ] 

    def _info(self):
        if self.config.type == "questionintimacy": 
            names = ['Very-intimate', 'Intimate', 'Somewhat-intimate', 'Not-very-intimate', 'Not-intimate', 'Not-intimate-at-all']
        elif self.config.type == "sexyn": 
            names = ['not sexism', 'sexism']
        elif self.config.type == "intentyn": 
            names = ['not intentional', 'intentional']
        elif self.config.type == "offensiveyn": 
            names = ['not offensive', 'offensive']
        elif self.config.type == "hasbiasedimplication": 
            names = ['not biased', 'biased']
        elif self.config.type == "trofi": 
            names = ['metaphor', 'non-metaphor']
        elif self.config.type == "sentitreebank": 
            names = ['positive', 'negative']
        elif self.config.type == "sarc": 
            names = ['sarcastic', 'literal']
        elif self.config.type == "stanfordpoliteness": 
            names = ['polite', 'impolite']
        elif self.config.type == "sarcasmghosh": 
            names = ['sarcastic', 'literal']
        elif self.config.type == "dailydialog": 
            names = ['noemotion', 'anger', 'disgust', 'fear', 'happiness', 'sadness', 'surprise']
        elif self.config.type == "shortromance": 
            names = ['romantic', 'literal']
        elif self.config.type == "crowdflower": 
            names = ['empty', 'sadness', 'enthusiasm', 'neutral', 'worry', 'love', 'fun', 'hate', 'happiness', 'relief', 'boredom', 'surprise', 'anger']
        elif self.config.type == "vua": 
            names = ['metaphor', 'non-metaphor']
        elif self.config.type == "shorthumor": 
            names = ['humorous', 'literal']
        elif self.config.type == "shortjokekaggle": 
            names = ['humorous', 'literal']
        elif self.config.type == "hateoffensive": 
            names = ['hate', 'offensive', 'neither']
        elif self.config.type == "emobank#valence": 
            names = ['valence(positive)']
        elif self.config.type == "emobank#arousal": 
            names = ['arousal(excited)']
        elif self.config.type == "emobank#dominance": 
            names = ['dominance(being_in_control)']
        elif self.config.type == "hayati_politeness": 
            names = ['impolite', 'polite']
        elif self.config.type == "jigsaw#toxic": 
            names = ['not toxic', 'toxic']
        elif self.config.type == "jigsaw#severe_toxic": 
            names = ['not severe toxic', 'severe toxic']
        elif self.config.type == "jigsaw#obscene": 
            names = ['not obscene', 'obscene']
        elif self.config.type == "jigsaw#threat": 
            names = ['not threat', 'threat']
        elif self.config.type == "jigsaw#insult": 
            names = ['not insult', 'insult']
        elif self.config.type == "jigsaw#identity_hate": 
            names = ['not identity hate', 'identity hate']
        elif self.config.type == "standup-comedy": 
            names = ['not funny', 'funny']
        elif self.config.type == "complaints": 
            names = ['not complaint', 'complaint']
        elif self.config.type == "hypo-l": 
            names = ['not hyperbole', 'hyperbole']
        elif self.config.type == "bragging#brag_action": 
            names = ['not action bragging', 'action bragging']
        elif self.config.type == "bragging#brag_feeling": 
            names = ['not feeling bragging', 'feeling bragging']
        elif self.config.type == "bragging#brag_achievement": 
            names = ['not achievement bragging', 'achievement bragging']
        elif self.config.type == "bragging#brag_possession": 
            names = ['not possession bragging', 'possession bragging']
        elif self.config.type == "bragging#brag_trait": 
            names = ['not trait bragging', 'trait bragging']
        elif self.config.type == "bragging#brag_affiliation": 
            names = ['not affiliation bragging', 'affiliation bragging']
        elif self.config.type == "contextual-abuse#IdentityDirectedAbuse": 
            names = ['not identity directed abuse', 'identity directed abuse']
        elif self.config.type == "contextual-abuse#AffiliationDirectedAbuse": 
            names = ['not affiliation directed abuse', 'affiliation directed abuse']
        elif self.config.type == "contextual-abuse#PersonDirectedAbuse": 
            names = ['not person directed abuse', 'person directed abuse']
        elif self.config.type == "contextual-abuse#CounterSpeech": 
            names = ['not counter speech', 'counter speech']
        elif self.config.type == "hahackathon#is_humor": 
            names = ['not humor', 'humor']
        elif self.config.type == "hahackathon#humor_rating": 
            names = ['humor rating']
        elif self.config.type == "hahackathon#offense_rating": 
            names = ['offense rating']
        elif self.config.type == "check_worthiness": 
            names = ['not check-worthy', 'check-worthy']
        elif self.config.type == "rumor#rumor_tf": 
            names = ['not rumor tf', 'rumor tf']
        elif self.config.type == "rumor#rumor_bool": 
            names = ['not rumor', 'rumor']
        elif self.config.type == "two-to-lie#deception": 
            names = ['not deception', 'deception']
        elif self.config.type == "two-to-lie#sender_truth": 
            names = ['lie', 'truth']
        elif self.config.type == "two-to-lie#receiver_truth": 
            names = ['lie', 'truth']
        elif self.config.type == "deceitful-reviews#true_rumor": 
            names = ['fake review', 'true review']
        elif self.config.type == "deceitful-reviews#positive": 
            names = ['negative', 'positive']
        elif self.config.type == "empathy#empathy": 
            names = ['empathy']
        elif self.config.type == "empathy#distress": 
            names = ['distress']
        elif self.config.type == "empathy#empathy_bin": 
            names = ['not empathy', 'empathy']
        elif self.config.type == "empathy#distress_bin": 
            names = ['not distress', 'distress bin']
        elif self.config.type == "implicit-hate#explicit_hate": 
            names = ['not explicit hate', 'explicit hate']
        elif self.config.type == "implicit-hate#implicit_hate": 
            names = ['not implicit hate', 'implicit hate']
        elif self.config.type == "implicit-hate#threatening_hate": 
            names = ['not threatening hate', 'threatening hate']
        elif self.config.type == "implicit-hate#irony_hate": 
            names = ['not irony hate', 'irony hate']
        elif self.config.type == "implicit-hate#other_hate": 
            names = ['not other hate', 'other hate']
        elif self.config.type == "implicit-hate#incitement_hate": 
            names = ['not incitement hate', 'incitement hate']
        elif self.config.type == "implicit-hate#inferiority_hate": 
            names = ['not inferiority hate', 'inferiority hate']
        elif self.config.type == "implicit-hate#stereotypical_hate": 
            names = ['not stereotypical hate', 'stereotypical hate']
        elif self.config.type == "implicit-hate#white_grievance_hate": 
            names = ['not white grievance hate', 'white grievance hate']
        elif self.config.type == "waseem_and_hovy#sexism": 
            names = ['not sexism', 'sexism']
        elif self.config.type == "waseem_and_hovy#racism": 
            names = ['not racism', 'racism']
        elif self.config.type == "humor-pairs": 
            names = ['the first sentence is funnier', 'the second sentence is funnier']
        elif self.config.type == "neutralizing-bias-pairs": 
            names = ['the first sentence is biased', 'the second sentence is biased']
        elif self.config.type == "same-side-pairs": 
            names = ['not same side', 'same side']
        elif self.config.type == "talkdown-pairs": 
            names = ['not condescension', 'condescension']
        elif self.config.type == "tweet_sentiment":
            names = ["negative", "neutral", "positive"]
        elif self.config.type == "tweet_offensive":
            names = ["not offensive", "offensive"]
        elif self.config.type == "tweet_irony":
            names = ["not irony", "irony"]
        elif self.config.type == "tweet_hate":
            names = ["not hate", "hate"]
        elif self.config.type == "tweet_emoji":
            names = [
                "❀",
                "😍",
                "πŸ˜‚",
                "πŸ’•",
                "πŸ”₯",
                "😊",
                "😎",
                "✨",
                "πŸ’™",
                "😘",
                "πŸ“·",
                "πŸ‡ΊπŸ‡Έ",
                "β˜€",
                "πŸ’œ",
                "πŸ˜‰",
                "πŸ’―",
                "😁",
                "πŸŽ„",
                "πŸ“Έ",
                "😜",
            ]

        elif self.config.type == "tweet_emotion":
            names = ["anger", "joy", "optimism", "sadness"]
        elif self.config.type == "emotion-span": 
            names = ['cause']
            label_type = datasets.Sequence(feature={n:datasets.Value(dtype='string', id=None) for n in names})
            print(label_type)
        elif self.config.type == "propaganda-span": 
            names = ['propaganda']
            label_type = datasets.Sequence(feature={n:datasets.Value(dtype='string', id=None) for n in names})
        elif self.config.type == "toxic-span": 
            names = ['toxic']
            label_type = datasets.Sequence(feature={n:datasets.Value(dtype='string', id=None) for n in names})
            
        if self.config.type[-4:]=='span':
            label_type = label_type#datasets.Sequence(feature={n:datasets.Value(dtype='string') for n in names})
        elif len(names) > 1:
            label_type = datasets.features.ClassLabel(names=names)
        else:
            label_type = datasets.Value("float32")
        
    
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {"text": datasets.Value("string"), 
                 "label": label_type}
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        my_urls = _URLs[self.config.type]
        data_dir = dl_manager.download_and_extract(my_urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"text_path": data_dir["train_text"], "labels_path": data_dir["train_labels"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"text_path": data_dir["test_text"], "labels_path": data_dir["test_labels"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"text_path": data_dir["val_text"], "labels_path": data_dir["val_labels"]},
            ),
        ]

    def _generate_examples(self, text_path, labels_path):
        """Yields examples."""

        with open(text_path, encoding="utf-8") as f:
            texts = f.readlines()
            print(len(texts))
        with open(labels_path, encoding="utf-8") as f:
            labels = f.readlines()
            print(len(labels))

        for i, text in enumerate(texts):
            yield i, {"text": text.strip(), "label": labels[i].strip() if self.config.type[-4:]!='span' else eval(labels[i])}