Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
parquet
Languages:
English
Size:
10K - 100K
License:
File size: 2,033 Bytes
cdc4362 60140d8 64f4935 60140d8 8ebda09 a826c0e 64f4935 1433934 64f4935 c722a42 77396f1 c722a42 bdcf6d1 cdc4362 64f4935 a826c0e bdcf6d1 a826c0e 1433934 a826c0e 751f6b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
language:
- en
license:
- cc0-1.0
pretty_name: Cat and Dog
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- image-classification
dataset_info:
features:
- name: image
dtype: image
- name: labels
dtype:
class_label:
names:
'0': cat
'1': dog
splits:
- name: train
num_bytes: 166451650.0
num_examples: 8000
- name: test
num_bytes: 42101650.0
num_examples: 2000
download_size: 227859268
dataset_size: 208553300.0
size_in_bytes: 436412568.0
---
## Dataset Description
- **Homepage:** [Cat and Dog](https://www.kaggle.com/datasets/tongpython/cat-and-dog)
- **Download Size** 217.30 MiB
- **Generated Size** 198.89 MiB
- **Total Size** 416.20 MiB
### Dataset Summary
A dataset from [kaggle](https://www.kaggle.com/datasets/tongpython/cat-and-dog) with duplicate data removed.
### Data Fields
The data instances have the following fields:
- `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`.
- `labels`: an `int` classification label.
### Class Label Mappings:
```
{
"cat": 0,
"dog": 1,
}
```
### Data Splits
| | train | test |
|---------------|-------|-----:|
| # of examples | 8000 | 2000 |
```python
>>> from datasets import load_dataset
>>> dataset = load_dataset("Bingsu/Cat_and_Dog")
>>> dataset
DatasetDict({
train: Dataset({
features: ['image', 'labels'],
num_rows: 8000
})
test: Dataset({
features: ['image', 'labels'],
num_rows: 2000
})
})
>>> dataset["train"].features
{'image': Image(decode=True, id=None), 'labels': ClassLabel(num_classes=2, names=['cat', 'dog'], id=None)}
``` |