File size: 10,541 Bytes
f8534bb
 
8036525
7f071ee
f8534bb
 
 
8036525
f8534bb
7f071ee
 
 
 
f8534bb
 
8036525
 
f8534bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8036525
f8534bb
8036525
f8534bb
 
 
 
7f071ee
f8534bb
 
 
 
 
 
8036525
f8534bb
 
 
7f071ee
 
f8534bb
 
 
 
 
 
 
 
 
8036525
f8534bb
 
 
8036525
f8534bb
 
 
 
 
7f071ee
 
f8534bb
8036525
f8534bb
 
 
 
8036525
f8534bb
 
 
7f071ee
 
f8534bb
 
 
7f071ee
f8534bb
7f071ee
 
f8534bb
 
7f071ee
f8534bb
7f071ee
 
f8534bb
 
 
7f071ee
f8534bb
 
 
 
 
8036525
f8534bb
 
 
8036525
f8534bb
 
 
 
 
 
 
 
 
7f071ee
f8534bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f071ee
f8534bb
 
 
 
8036525
f8534bb
 
 
 
 
 
 
 
 
 
 
 
7f071ee
 
8036525
f8534bb
 
 
7f071ee
f8534bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f071ee
f8534bb
 
 
 
8036525
7f071ee
8036525
 
 
 
 
 
 
 
 
 
 
f8534bb
 
 
7f071ee
 
 
 
 
 
 
 
f8534bb
 
 
 
7f071ee
 
 
 
f8534bb
 
8036525
 
 
 
7f071ee
 
 
 
 
d7661a5
 
f8534bb
 
7f071ee
 
 
f8534bb
7f071ee
8036525
f8534bb
 
 
7f071ee
 
 
 
 
 
 
 
 
 
 
 
 
 
f8534bb
7f071ee
f8534bb
 
7f071ee
f8534bb
 
 
8036525
 
7f071ee
 
 
 
 
f8534bb
 
 
 
7f071ee
f8534bb
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
#!/usr/bin/env python3
"""
Sample atomic commits from CCS dataset for concern extraction.
Implements balanced sampling pipeline with filtering, normalization, and deduplication.
"""

import pandas as pd

import tiktoken
from typing import Dict, List, Set, Tuple

# Random seed for reproducibility
RANDOM_SEED: int = 42

# Processing configuration
CONVENTIONAL_COMMIT_TYPES: List[str] = ["feat", "fix", "refactor", "test", "docs", "build", "cicd"]
SAMPLES_PER_TYPE: int = 50
TARGET_TOKEN_LIMIT: int = 12288  # 16384 - 4096
ENCODING_MODEL: str = "cl100k_base"  # GPT-4 encoding

# Column name constants
COLUMN_SHA: str = "sha"
COLUMN_ANNOTATED_TYPE: str = "annotated_type"
COLUMN_GIT_DIFF: str = "git_diff"
COLUMN_MASKED_COMMIT_MESSAGE: str = "masked_commit_message"
OUTPUT_COLUMNS: List[str] = [
    COLUMN_ANNOTATED_TYPE,
    COLUMN_MASKED_COMMIT_MESSAGE,
    COLUMN_GIT_DIFF,
    COLUMN_SHA,
]

# Data transformation constants
CI_TO_CICD_REPLACEMENT: str = "cicd"

# File paths
CCS_SOURCE_PATH: str = "data/CCS Dataset.csv"
SAMPLED_CSV_PATH: str = "data/sampled_ccs_dataset.csv"
EXCLUDED_COMMITS_PATH: str = "data/excluded_commits.csv"
DIFF_OUTPUT_DIR: str = "data/types"


def normalize_dataset(df: pd.DataFrame) -> pd.DataFrame:
    """Normalize CI commit type labels to CICD for consistent categorization."""
    df[COLUMN_ANNOTATED_TYPE] = (
        df[COLUMN_ANNOTATED_TYPE]
        .str.lower()
        .str.strip()
        .replace("ci", CI_TO_CICD_REPLACEMENT)
    )
    print("Applied CI -> CICD normalization")
    return df


def remove_long_token_commits(df: pd.DataFrame) -> pd.DataFrame:
    """Filter out commits exceeding TARGET_TOKEN_LIMIT to prevent model context overflow."""
    encoding = tiktoken.get_encoding(ENCODING_MODEL)

    combined_text = (
        df[COLUMN_GIT_DIFF].astype(str)
        + " "
        + df[COLUMN_MASKED_COMMIT_MESSAGE].astype(str)
    )

    token_counts = combined_text.apply(lambda x: len(encoding.encode(x)))
    filtered_df = df[token_counts <= TARGET_TOKEN_LIMIT].copy()

    removed_count = len(df) - len(filtered_df)
    if removed_count > 0:
        print(f"Token filtering: removed {removed_count} commits exceeding {TARGET_TOKEN_LIMIT} tokens")

    print(f"Token filtering: kept {len(filtered_df)} commits")
    return filtered_df


def remove_existing_commits(df: pd.DataFrame, excluded_shas: Set[str]) -> pd.DataFrame:
    """Remove commits with SHAs that already exist in the sampled dataset."""
    original_count = len(df)
    
    sha_mask = ~df[COLUMN_SHA].astype(str).isin(excluded_shas)
    filtered_df = df[sha_mask].copy()

    removed_count = original_count - len(filtered_df)
    print(f"SHA deduplication: removed {removed_count} duplicate commits")
    return filtered_df


def load_shas_and_type_counts(file_path: str) -> Tuple[Set[str], Dict[str, int]]:
    """Load commit SHAs and type counts from CSV file for deduplication and intelligent sampling."""
    try:
        df = pd.read_csv(file_path)
        sha_set = set(df[COLUMN_SHA].astype(str))
        type_counts = df[COLUMN_ANNOTATED_TYPE].value_counts().to_dict()
        print(f"Loaded {len(sha_set)} SHAs for deduplication")
        print(f"Existing type counts: {type_counts}")
        return sha_set, type_counts
    except FileNotFoundError:
        print(f"No existing samples found at {file_path}")
        return set(), {}
    except Exception as e:
        print(f"Error loading existing data: {e}")
        return set(), {}


def load_ccs_dataset(file_path: str) -> pd.DataFrame:
    """Load CCS dataset CSV and validate required columns exist."""
    try:
        df = pd.read_csv(file_path)
        if df.empty:
            raise ValueError("Dataset is empty")

        missing_columns = set(OUTPUT_COLUMNS) - set(df.columns)
        if missing_columns:
            raise ValueError(f"Missing required columns: {missing_columns}")

        print(f"Loaded {len(df)} records from CCS dataset")
        return df
    except Exception as e:
        print(f"Error loading dataset: {e}")
        raise


def save_to_csv(
    data: List[Dict[str, str]], output_path: str, columns: List[str]
) -> None:
    """Save sampled commit data to CSV file, appending if file exists."""
    import os

    os.makedirs(os.path.dirname(output_path), exist_ok=True)

    if data:
        df = pd.DataFrame(data, columns=columns)
        file_exists = os.path.exists(output_path)

        df.to_csv(
            output_path,
            mode="a" if file_exists else "w",
            header=not file_exists,
            index=False,
        )

    print(f"Saved {len(data)} records to {output_path}")


def group_commits_by_type(
    df: pd.DataFrame, valid_types: List[str]
) -> Dict[str, pd.DataFrame]:
    """Filter commits by valid types and group into separate DataFrames by type."""
    type_mask = df[COLUMN_ANNOTATED_TYPE].isin(valid_types)
    valid_df = df[type_mask].copy()

    excluded_count = len(df) - len(valid_df)
    print(f"Type filtering: excluded {excluded_count} records (invalid types)")

    commits_by_type = {}
    for commit_type, group_df in valid_df.groupby(COLUMN_ANNOTATED_TYPE):
        commits_by_type[commit_type] = group_df
        print(f"  {commit_type}: {len(group_df)} commits")

    return commits_by_type


def sample_commits_for_type(
    df: pd.DataFrame, count: int, output_columns: List[str]
) -> List[Dict[str, str]]:
    """Randomly sample specified count of commits from DataFrame."""
    sampled_df = df.sample(n=count, random_state=RANDOM_SEED)
    return sampled_df[output_columns].to_dict("records")


def extract_diffs(sampled_data: List[Dict[str, str]], output_dir: str) -> None:
    """Create individual diff files organized by commit type in subdirectories."""
    import os

    type_counts = {}

    for record in sampled_data:
        commit_type = record[COLUMN_ANNOTATED_TYPE]

        # Create type directory if needed
        type_dir = os.path.join(output_dir, commit_type)
        os.makedirs(type_dir, exist_ok=True)

        # Count entries for this type
        if commit_type not in type_counts:
            type_counts[commit_type] = 0
        type_counts[commit_type] += 1

        # Generate filename
        filename = f"{commit_type}_{type_counts[commit_type]}_{record[COLUMN_SHA]}.diff"
        filepath = os.path.join(type_dir, filename)

        # Create file content with metadata
        content_lines = [
            f"# Type: {commit_type}",
            f"# Commit Message: {record[COLUMN_MASKED_COMMIT_MESSAGE]}",
            f"# SHA: {record[COLUMN_SHA]}",
            "",
            "# === Git Diff Content ===",
            "",
            record[COLUMN_GIT_DIFF],
        ]

        with open(filepath, "w", encoding="utf-8") as f:
            f.write("\n".join(content_lines))

    print(f"Extracted {len(sampled_data)} diff files to {output_dir}")

def remove_excluded_commits(df: pd.DataFrame, excluded_shas: Set[str]) -> pd.DataFrame:
    """Remove commits with SHAs listed in the excluded commits file."""
    before_count = len(df)
    print(f"Initial commit count: {before_count}")
    
    mask = ~df[COLUMN_SHA].astype(str).isin(excluded_shas)
    excluded_count = before_count - mask.sum()
    print(f"Excluded {excluded_count} commits by SHA")
    
    filtered_df = df[mask].copy()
    print(f"Remaining commit count: {len(filtered_df)}")
    return filtered_df


def main() -> None:
    """
    Execute atomic sampling pipeline for CCS dataset:
    1. Load dataset, existing SHAs and type counts for deduplication and sampling
    2. Remove excluded commits by SHA
    3. Remove existing commits to prevent duplicates
    4. Normalize CI commit types to CICD
    5. Filter commits exceeding token limits
    6. Sample needed amounts per type to reach target
    7. Save results and extract individual diff files (new samples only)
    """
    print("Starting atomic sampling strategy for CCS dataset")
    print("=" * 50)

    # Step 1: Load dataset, backup SHAs and existing type counts
    print("Step 1: Loading dataset, backup SHAs and existing type counts")
    existing_shas, existing_type_counts = load_shas_and_type_counts(SAMPLED_CSV_PATH)
    excluded_shas, _ = load_shas_and_type_counts(EXCLUDED_COMMITS_PATH)
    ccs_df = load_ccs_dataset(CCS_SOURCE_PATH)

    # Step 2: Remove excluded commits
    print("\nStep 2: Removing excluded commits")
    ccs_df = remove_excluded_commits(ccs_df, excluded_shas)

    # Step 3: Remove existing commits
    print("\nStep 3: Removing existing commits")
    ccs_df = remove_existing_commits(ccs_df, existing_shas)

    # Step 4: Apply CI->CICD normalization
    # print("\nStep 4: Applying CI->CICD normalization")
    # ccs_df = normalize_dataset(ccs_df)


    # Step 5: Apply token-based filtering
    print("\nStep 5: Applying token-based filtering")
    ccs_df = remove_long_token_commits(ccs_df)

    # Step 6: Group by type and sample
    print("\nStep 6: Grouping by type and random sampling")
    commits_by_type = group_commits_by_type(ccs_df, CONVENTIONAL_COMMIT_TYPES)

    all_sampled_data = []
    
    for commit_type, commits_df in commits_by_type.items():
        existing_type_count = existing_type_counts.get(commit_type, 0)
        needed_count = max(0, SAMPLES_PER_TYPE - existing_type_count) # Skip if target reached
        available_type_count = len(commits_df)
        actual_sample_count = min(needed_count, available_type_count)
        
        if needed_count == 0:
            print(f"  {commit_type}: target reached, skipping")
            continue
        if actual_sample_count <= 0:
            print(f"  {commit_type}: no commits available")
            continue
    
        sampled_data = sample_commits_for_type(
            commits_df, actual_sample_count, OUTPUT_COLUMNS
        )
        all_sampled_data.extend(sampled_data)
        print(f"  {commit_type}: sampled {actual_sample_count} commits")

    print(f"Random sampling: generated {len(all_sampled_data)} samples total")

    # Step 7: Save results and extract diffs
    print("\nStep 7: Saving results and extracting diffs")
    if all_sampled_data:
        save_to_csv(all_sampled_data, SAMPLED_CSV_PATH, OUTPUT_COLUMNS)
        extract_diffs(all_sampled_data, DIFF_OUTPUT_DIR)
    else:
        print("No new samples to save - all types have reached target counts")

    # Final summary
    print("\n" + "=" * 50)
    print("Atomic sampling completed successfully!")
    print(f"New samples added: {len(all_sampled_data)}")


if __name__ == "__main__":
    main()