File size: 10,541 Bytes
f8534bb 8036525 7f071ee f8534bb 8036525 f8534bb 7f071ee f8534bb 8036525 f8534bb 8036525 f8534bb 8036525 f8534bb 7f071ee f8534bb 8036525 f8534bb 7f071ee f8534bb 8036525 f8534bb 8036525 f8534bb 7f071ee f8534bb 8036525 f8534bb 8036525 f8534bb 7f071ee f8534bb 7f071ee f8534bb 7f071ee f8534bb 7f071ee f8534bb 7f071ee f8534bb 7f071ee f8534bb 8036525 f8534bb 8036525 f8534bb 7f071ee f8534bb 7f071ee f8534bb 8036525 f8534bb 7f071ee 8036525 f8534bb 7f071ee f8534bb 7f071ee f8534bb 8036525 7f071ee 8036525 f8534bb 7f071ee f8534bb 7f071ee f8534bb 8036525 7f071ee d7661a5 f8534bb 7f071ee f8534bb 7f071ee 8036525 f8534bb 7f071ee f8534bb 7f071ee f8534bb 7f071ee f8534bb 8036525 7f071ee f8534bb 7f071ee f8534bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
#!/usr/bin/env python3
"""
Sample atomic commits from CCS dataset for concern extraction.
Implements balanced sampling pipeline with filtering, normalization, and deduplication.
"""
import pandas as pd
import tiktoken
from typing import Dict, List, Set, Tuple
# Random seed for reproducibility
RANDOM_SEED: int = 42
# Processing configuration
CONVENTIONAL_COMMIT_TYPES: List[str] = ["feat", "fix", "refactor", "test", "docs", "build", "cicd"]
SAMPLES_PER_TYPE: int = 50
TARGET_TOKEN_LIMIT: int = 12288 # 16384 - 4096
ENCODING_MODEL: str = "cl100k_base" # GPT-4 encoding
# Column name constants
COLUMN_SHA: str = "sha"
COLUMN_ANNOTATED_TYPE: str = "annotated_type"
COLUMN_GIT_DIFF: str = "git_diff"
COLUMN_MASKED_COMMIT_MESSAGE: str = "masked_commit_message"
OUTPUT_COLUMNS: List[str] = [
COLUMN_ANNOTATED_TYPE,
COLUMN_MASKED_COMMIT_MESSAGE,
COLUMN_GIT_DIFF,
COLUMN_SHA,
]
# Data transformation constants
CI_TO_CICD_REPLACEMENT: str = "cicd"
# File paths
CCS_SOURCE_PATH: str = "data/CCS Dataset.csv"
SAMPLED_CSV_PATH: str = "data/sampled_ccs_dataset.csv"
EXCLUDED_COMMITS_PATH: str = "data/excluded_commits.csv"
DIFF_OUTPUT_DIR: str = "data/types"
def normalize_dataset(df: pd.DataFrame) -> pd.DataFrame:
"""Normalize CI commit type labels to CICD for consistent categorization."""
df[COLUMN_ANNOTATED_TYPE] = (
df[COLUMN_ANNOTATED_TYPE]
.str.lower()
.str.strip()
.replace("ci", CI_TO_CICD_REPLACEMENT)
)
print("Applied CI -> CICD normalization")
return df
def remove_long_token_commits(df: pd.DataFrame) -> pd.DataFrame:
"""Filter out commits exceeding TARGET_TOKEN_LIMIT to prevent model context overflow."""
encoding = tiktoken.get_encoding(ENCODING_MODEL)
combined_text = (
df[COLUMN_GIT_DIFF].astype(str)
+ " "
+ df[COLUMN_MASKED_COMMIT_MESSAGE].astype(str)
)
token_counts = combined_text.apply(lambda x: len(encoding.encode(x)))
filtered_df = df[token_counts <= TARGET_TOKEN_LIMIT].copy()
removed_count = len(df) - len(filtered_df)
if removed_count > 0:
print(f"Token filtering: removed {removed_count} commits exceeding {TARGET_TOKEN_LIMIT} tokens")
print(f"Token filtering: kept {len(filtered_df)} commits")
return filtered_df
def remove_existing_commits(df: pd.DataFrame, excluded_shas: Set[str]) -> pd.DataFrame:
"""Remove commits with SHAs that already exist in the sampled dataset."""
original_count = len(df)
sha_mask = ~df[COLUMN_SHA].astype(str).isin(excluded_shas)
filtered_df = df[sha_mask].copy()
removed_count = original_count - len(filtered_df)
print(f"SHA deduplication: removed {removed_count} duplicate commits")
return filtered_df
def load_shas_and_type_counts(file_path: str) -> Tuple[Set[str], Dict[str, int]]:
"""Load commit SHAs and type counts from CSV file for deduplication and intelligent sampling."""
try:
df = pd.read_csv(file_path)
sha_set = set(df[COLUMN_SHA].astype(str))
type_counts = df[COLUMN_ANNOTATED_TYPE].value_counts().to_dict()
print(f"Loaded {len(sha_set)} SHAs for deduplication")
print(f"Existing type counts: {type_counts}")
return sha_set, type_counts
except FileNotFoundError:
print(f"No existing samples found at {file_path}")
return set(), {}
except Exception as e:
print(f"Error loading existing data: {e}")
return set(), {}
def load_ccs_dataset(file_path: str) -> pd.DataFrame:
"""Load CCS dataset CSV and validate required columns exist."""
try:
df = pd.read_csv(file_path)
if df.empty:
raise ValueError("Dataset is empty")
missing_columns = set(OUTPUT_COLUMNS) - set(df.columns)
if missing_columns:
raise ValueError(f"Missing required columns: {missing_columns}")
print(f"Loaded {len(df)} records from CCS dataset")
return df
except Exception as e:
print(f"Error loading dataset: {e}")
raise
def save_to_csv(
data: List[Dict[str, str]], output_path: str, columns: List[str]
) -> None:
"""Save sampled commit data to CSV file, appending if file exists."""
import os
os.makedirs(os.path.dirname(output_path), exist_ok=True)
if data:
df = pd.DataFrame(data, columns=columns)
file_exists = os.path.exists(output_path)
df.to_csv(
output_path,
mode="a" if file_exists else "w",
header=not file_exists,
index=False,
)
print(f"Saved {len(data)} records to {output_path}")
def group_commits_by_type(
df: pd.DataFrame, valid_types: List[str]
) -> Dict[str, pd.DataFrame]:
"""Filter commits by valid types and group into separate DataFrames by type."""
type_mask = df[COLUMN_ANNOTATED_TYPE].isin(valid_types)
valid_df = df[type_mask].copy()
excluded_count = len(df) - len(valid_df)
print(f"Type filtering: excluded {excluded_count} records (invalid types)")
commits_by_type = {}
for commit_type, group_df in valid_df.groupby(COLUMN_ANNOTATED_TYPE):
commits_by_type[commit_type] = group_df
print(f" {commit_type}: {len(group_df)} commits")
return commits_by_type
def sample_commits_for_type(
df: pd.DataFrame, count: int, output_columns: List[str]
) -> List[Dict[str, str]]:
"""Randomly sample specified count of commits from DataFrame."""
sampled_df = df.sample(n=count, random_state=RANDOM_SEED)
return sampled_df[output_columns].to_dict("records")
def extract_diffs(sampled_data: List[Dict[str, str]], output_dir: str) -> None:
"""Create individual diff files organized by commit type in subdirectories."""
import os
type_counts = {}
for record in sampled_data:
commit_type = record[COLUMN_ANNOTATED_TYPE]
# Create type directory if needed
type_dir = os.path.join(output_dir, commit_type)
os.makedirs(type_dir, exist_ok=True)
# Count entries for this type
if commit_type not in type_counts:
type_counts[commit_type] = 0
type_counts[commit_type] += 1
# Generate filename
filename = f"{commit_type}_{type_counts[commit_type]}_{record[COLUMN_SHA]}.diff"
filepath = os.path.join(type_dir, filename)
# Create file content with metadata
content_lines = [
f"# Type: {commit_type}",
f"# Commit Message: {record[COLUMN_MASKED_COMMIT_MESSAGE]}",
f"# SHA: {record[COLUMN_SHA]}",
"",
"# === Git Diff Content ===",
"",
record[COLUMN_GIT_DIFF],
]
with open(filepath, "w", encoding="utf-8") as f:
f.write("\n".join(content_lines))
print(f"Extracted {len(sampled_data)} diff files to {output_dir}")
def remove_excluded_commits(df: pd.DataFrame, excluded_shas: Set[str]) -> pd.DataFrame:
"""Remove commits with SHAs listed in the excluded commits file."""
before_count = len(df)
print(f"Initial commit count: {before_count}")
mask = ~df[COLUMN_SHA].astype(str).isin(excluded_shas)
excluded_count = before_count - mask.sum()
print(f"Excluded {excluded_count} commits by SHA")
filtered_df = df[mask].copy()
print(f"Remaining commit count: {len(filtered_df)}")
return filtered_df
def main() -> None:
"""
Execute atomic sampling pipeline for CCS dataset:
1. Load dataset, existing SHAs and type counts for deduplication and sampling
2. Remove excluded commits by SHA
3. Remove existing commits to prevent duplicates
4. Normalize CI commit types to CICD
5. Filter commits exceeding token limits
6. Sample needed amounts per type to reach target
7. Save results and extract individual diff files (new samples only)
"""
print("Starting atomic sampling strategy for CCS dataset")
print("=" * 50)
# Step 1: Load dataset, backup SHAs and existing type counts
print("Step 1: Loading dataset, backup SHAs and existing type counts")
existing_shas, existing_type_counts = load_shas_and_type_counts(SAMPLED_CSV_PATH)
excluded_shas, _ = load_shas_and_type_counts(EXCLUDED_COMMITS_PATH)
ccs_df = load_ccs_dataset(CCS_SOURCE_PATH)
# Step 2: Remove excluded commits
print("\nStep 2: Removing excluded commits")
ccs_df = remove_excluded_commits(ccs_df, excluded_shas)
# Step 3: Remove existing commits
print("\nStep 3: Removing existing commits")
ccs_df = remove_existing_commits(ccs_df, existing_shas)
# Step 4: Apply CI->CICD normalization
# print("\nStep 4: Applying CI->CICD normalization")
# ccs_df = normalize_dataset(ccs_df)
# Step 5: Apply token-based filtering
print("\nStep 5: Applying token-based filtering")
ccs_df = remove_long_token_commits(ccs_df)
# Step 6: Group by type and sample
print("\nStep 6: Grouping by type and random sampling")
commits_by_type = group_commits_by_type(ccs_df, CONVENTIONAL_COMMIT_TYPES)
all_sampled_data = []
for commit_type, commits_df in commits_by_type.items():
existing_type_count = existing_type_counts.get(commit_type, 0)
needed_count = max(0, SAMPLES_PER_TYPE - existing_type_count) # Skip if target reached
available_type_count = len(commits_df)
actual_sample_count = min(needed_count, available_type_count)
if needed_count == 0:
print(f" {commit_type}: target reached, skipping")
continue
if actual_sample_count <= 0:
print(f" {commit_type}: no commits available")
continue
sampled_data = sample_commits_for_type(
commits_df, actual_sample_count, OUTPUT_COLUMNS
)
all_sampled_data.extend(sampled_data)
print(f" {commit_type}: sampled {actual_sample_count} commits")
print(f"Random sampling: generated {len(all_sampled_data)} samples total")
# Step 7: Save results and extract diffs
print("\nStep 7: Saving results and extracting diffs")
if all_sampled_data:
save_to_csv(all_sampled_data, SAMPLED_CSV_PATH, OUTPUT_COLUMNS)
extract_diffs(all_sampled_data, DIFF_OUTPUT_DIR)
else:
print("No new samples to save - all types have reached target counts")
# Final summary
print("\n" + "=" * 50)
print("Atomic sampling completed successfully!")
print(f"New samples added: {len(all_sampled_data)}")
if __name__ == "__main__":
main()
|