File size: 13,995 Bytes
e0af5ee
 
 
519acd4
e0af5ee
519acd4
e0af5ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
---
annotations_creators: []
language_creators: []
language:
- en
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
paperswithcode_id: beir
pretty_name: BEIR Benchmark
size_categories:
  msmarco:
  - 1M<n<10M
  trec-covid:
  - 100k<n<1M
  nfcorpus:
  - 1K<n<10K
  nq:
  - 1M<n<10M
  hotpotqa:
  - 1M<n<10M
  fiqa:
  - 10K<n<100K
  arguana:
  - 1K<n<10K
  touche-2020:
  - 100K<n<1M
  cqadupstack:
  - 100K<n<1M
  quora:
  - 100K<n<1M
  dbpedia:
  - 1M<n<10M
  scidocs:
  - 10K<n<100K
  fever:
  - 1M<n<10M
  climate-fever:
  - 1M<n<10M
  scifact:
  - 1K<n<10K
source_datasets: []
task_categories:
- text-retrieval
- zero-shot-retrieval
- information-retrieval
- zero-shot-information-retrieval
task_ids:
- passage-retrieval
- entity-linking-retrieval
- fact-checking-retrieval
- tweet-retrieval
- citation-prediction-retrieval
- duplication-question-retrieval
- argument-retrieval
- news-retrieval
- biomedical-information-retrieval
- question-answering-retrieval
---

# Dataset Card for BEIR Benchmark

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://github.com/UKPLab/beir
- **Repository:** https://github.com/UKPLab/beir
- **Paper:** https://openreview.net/forum?id=wCu6T5xFjeJ
- **Leaderboard:** https://docs.google.com/spreadsheets/d/1L8aACyPaXrL8iEelJLGqlMqXKPX2oSP_R10pZoy77Ns
- **Point of Contact:** nandan.thakur@uwaterloo.ca

### Dataset Summary

BEIR is a heterogeneous benchmark that has been built from 18 diverse datasets representing 9 information retrieval tasks:

- Fact-checking: [FEVER](http://fever.ai), [Climate-FEVER](http://climatefever.ai), [SciFact](https://github.com/allenai/scifact)
- Question-Answering: [NQ](https://ai.google.com/research/NaturalQuestions), [HotpotQA](https://hotpotqa.github.io), [FiQA-2018](https://sites.google.com/view/fiqa/)
- Bio-Medical IR: [TREC-COVID](https://ir.nist.gov/covidSubmit/index.html), [BioASQ](http://bioasq.org), [NFCorpus](https://www.cl.uni-heidelberg.de/statnlpgroup/nfcorpus/)
- News Retrieval: [TREC-NEWS](https://trec.nist.gov/data/news2019.html), [Robust04](https://trec.nist.gov/data/robust/04.guidelines.html)
- Argument Retrieval: [Touche-2020](https://webis.de/events/touche-20/shared-task-1.html), [ArguAna](tp://argumentation.bplaced.net/arguana/data)
- Duplicate Question Retrieval: [Quora](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs), [CqaDupstack](http://nlp.cis.unimelb.edu.au/resources/cqadupstack/)
- Citation-Prediction: [SCIDOCS](https://allenai.org/data/scidocs)
- Tweet Retrieval: [Signal-1M](https://research.signal-ai.com/datasets/signal1m-tweetir.html)
- Entity Retrieval: [DBPedia](https://github.com/iai-group/DBpedia-Entity/)

All these datasets have been preprocessed and can be used for your experiments.


```python

```

### Supported Tasks and Leaderboards

The dataset supports a leaderboard that evaluates models against task-specific metrics such as F1 or EM, as well as their ability to retrieve supporting information from Wikipedia.

The current best performing models can be found [here](https://eval.ai/web/challenges/challenge-page/689/leaderboard/).

### Languages

All tasks are in English (`en`).

## Dataset Structure

All BEIR datasets must contain a corpus, queries and qrels (relevance judgments file). They must be in the following format:
- `corpus` file: a `.jsonl` file (jsonlines) that contains a list of dictionaries, each with three fields `_id` with unique document identifier, `title` with document title (optional) and `text` with document paragraph or passage. For example: `{"_id": "doc1", "title": "Albert Einstein", "text": "Albert Einstein was a German-born...."}`
- `queries` file: a `.jsonl` file (jsonlines) that contains a list of dictionaries, each with two fields `_id` with unique query identifier and `text` with query text. For example: `{"_id": "q1", "text": "Who developed the mass-energy equivalence formula?"}`
- `qrels` file: a `.tsv` file (tab-seperated) that contains three columns, i.e. the `query-id`, `corpus-id` and `score` in this order. Keep 1st row as header. For example: `q1 doc1 1`

### Data Instances

A high level example of any beir dataset:

```python
corpus = {
    "doc1" : {
        "title": "Albert Einstein", 
        "text": "Albert Einstein was a German-born theoretical physicist. who developed the theory of relativity, \
                 one of the two pillars of modern physics (alongside quantum mechanics). His work is also known for \
                 its influence on the philosophy of science. He is best known to the general public for his mass–energy \
                 equivalence formula E = mc2, which has been dubbed 'the world's most famous equation'. He received the 1921 \
                 Nobel Prize in Physics 'for his services to theoretical physics, and especially for his discovery of the law \
                 of the photoelectric effect', a pivotal step in the development of quantum theory."
        },
    "doc2" : {
        "title": "", # Keep title an empty string if not present
        "text": "Wheat beer is a top-fermented beer which is brewed with a large proportion of wheat relative to the amount of \
                 malted barley. The two main varieties are German Weißbier and Belgian witbier; other types include Lambic (made\
                 with wild yeast), Berliner Weisse (a cloudy, sour beer), and Gose (a sour, salty beer)."
    },
}

queries = {
    "q1" : "Who developed the mass-energy equivalence formula?",
    "q2" : "Which beer is brewed with a large proportion of wheat?"
}

qrels = {
    "q1" : {"doc1": 1},
    "q2" : {"doc2": 1},
}
```

### Data Fields

Examples from all configurations have the following features:

### Corpus
- `corpus`: a `dict` feature representing the document title and passage text, made up of:
    - `_id`: a `string` feature representing the unique document id
        - `title`: a `string` feature, denoting the title of the document.
        - `text`: a `string` feature, denoting the text of the document.

### Queries
- `queries`: a `dict` feature representing the query, made up of:
    - `_id`: a `string` feature representing the unique query id
    - `text`: a `string` feature, denoting the text of the query.

### Qrels
- `qrels`: a `dict` feature representing the query document relevance judgements, made up of:
    - `_id`: a `string` feature representing the query id
        - `_id`: a `string` feature, denoting the document id.
        - `score`: a `int32` feature, denoting the relevance judgement between query and document.


### Data Splits

| Dataset   | Website| BEIR-Name | Type | Queries  | Corpus | Rel D/Q | Down-load | md5 |
| -------- | -----| ---------| --------- | ----------- | ---------| ---------| :----------: | :------:|
| MSMARCO    | [Homepage](https://microsoft.github.io/msmarco/)| ``msmarco`` | ``train``<br>``dev``<br>``test``|  6,980   |  8.84M     |    1.1 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/msmarco.zip) | ``444067daf65d982533ea17ebd59501e4`` |
| TREC-COVID |  [Homepage](https://ir.nist.gov/covidSubmit/index.html)| ``trec-covid``| ``test``| 50|  171K| 493.5 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/trec-covid.zip) | ``ce62140cb23feb9becf6270d0d1fe6d1`` |
| NFCorpus   | [Homepage](https://www.cl.uni-heidelberg.de/statnlpgroup/nfcorpus/) | ``nfcorpus`` | ``train``<br>``dev``<br>``test``|  323     |  3.6K     |  38.2 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/nfcorpus.zip) | ``a89dba18a62ef92f7d323ec890a0d38d`` |
| BioASQ     | [Homepage](http://bioasq.org) | ``bioasq``|  ``train``<br>``test`` | 500    |  14.91M    |  8.05 | No | [How to Reproduce?](https://github.com/UKPLab/beir/blob/main/examples/dataset#2-bioasq) |
| NQ         | [Homepage](https://ai.google.com/research/NaturalQuestions) | ``nq``| ``train``<br>``test``| 3,452   |  2.68M  |  1.2 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/nq.zip) | ``d4d3d2e48787a744b6f6e691ff534307`` |
| HotpotQA   | [Homepage](https://hotpotqa.github.io) | ``hotpotqa``| ``train``<br>``dev``<br>``test``|  7,405   |  5.23M  |  2.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/hotpotqa.zip)  | ``f412724f78b0d91183a0e86805e16114`` |
| FiQA-2018  | [Homepage](https://sites.google.com/view/fiqa/) | ``fiqa`` | ``train``<br>``dev``<br>``test``|  648     |  57K    |  2.6 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/fiqa.zip)  | ``17918ed23cd04fb15047f73e6c3bd9d9`` |
| Signal-1M(RT) | [Homepage](https://research.signal-ai.com/datasets/signal1m-tweetir.html)| ``signal1m`` | ``test``| 97   |  2.86M  |  19.6 | No | [How to Reproduce?](https://github.com/UKPLab/beir/blob/main/examples/dataset#4-signal-1m) |
| TREC-NEWS  | [Homepage](https://trec.nist.gov/data/news2019.html) | ``trec-news``    | ``test``| 57    |  595K    |  19.6 | No | [How to Reproduce?](https://github.com/UKPLab/beir/blob/main/examples/dataset#1-trec-news) |
| ArguAna    | [Homepage](http://argumentation.bplaced.net/arguana/data) | ``arguana``| ``test`` | 1,406     |  8.67K    |  1.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/arguana.zip)  | ``8ad3e3c2a5867cdced806d6503f29b99`` |
| Touche-2020| [Homepage](https://webis.de/events/touche-20/shared-task-1.html) | ``webis-touche2020``| ``test``| 49     |  382K    |  19.0 |  [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/webis-touche2020.zip) | ``46f650ba5a527fc69e0a6521c5a23563`` |
| CQADupstack| [Homepage](http://nlp.cis.unimelb.edu.au/resources/cqadupstack/) | ``cqadupstack``| ``test``| 13,145 |  457K  |  1.4 |  [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/cqadupstack.zip) | ``4e41456d7df8ee7760a7f866133bda78`` |
| Quora| [Homepage](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) | ``quora``| ``dev``<br>``test``| 10,000     |  523K    |  1.6 |  [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/quora.zip) | ``18fb154900ba42a600f84b839c173167`` |
| DBPedia | [Homepage](https://github.com/iai-group/DBpedia-Entity/) | ``dbpedia-entity``| ``dev``<br>``test``| 400    |  4.63M    |  38.2 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/dbpedia-entity.zip) | ``c2a39eb420a3164af735795df012ac2c`` |
| SCIDOCS| [Homepage](https://allenai.org/data/scidocs) | ``scidocs``| ``test``| 1,000     |  25K    |  4.9 |  [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/scidocs.zip) | ``38121350fc3a4d2f48850f6aff52e4a9`` |
| FEVER | [Homepage](http://fever.ai) | ``fever``| ``train``<br>``dev``<br>``test``|  6,666     |  5.42M    |  1.2|  [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/fever.zip)  | ``5a818580227bfb4b35bb6fa46d9b6c03`` |
| Climate-FEVER| [Homepage](http://climatefever.ai) | ``climate-fever``|``test``|  1,535     |  5.42M |  3.0 |  [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/climate-fever.zip)  | ``8b66f0a9126c521bae2bde127b4dc99d`` |
| SciFact| [Homepage](https://github.com/allenai/scifact) | ``scifact``| ``train``<br>``test``|  300     |  5K    |  1.1 |  [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/scifact.zip)  | ``5f7d1de60b170fc8027bb7898e2efca1`` |
| Robust04 | [Homepage](https://trec.nist.gov/data/robust/04.guidelines.html) | ``robust04``| ``test``| 249  |  528K  |  69.9 |  No  |  [How to Reproduce?](https://github.com/UKPLab/beir/blob/main/examples/dataset#3-robust04)  |


## Dataset Creation

### Curation Rationale

[Needs More Information]

### Source Data

#### Initial Data Collection and Normalization

[Needs More Information]

#### Who are the source language producers?

[Needs More Information]

### Annotations

#### Annotation process

[Needs More Information]

#### Who are the annotators?

[Needs More Information]

### Personal and Sensitive Information

[Needs More Information]

## Considerations for Using the Data

### Social Impact of Dataset

[Needs More Information]

### Discussion of Biases

[Needs More Information]

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators

[Needs More Information]

### Licensing Information

[Needs More Information]

### Citation Information

Cite as:
```
@inproceedings{
thakur2021beir,
title={{BEIR}: A Heterogeneous Benchmark for Zero-shot Evaluation of Information Retrieval Models},
author={Nandan Thakur and Nils Reimers and Andreas R{\"u}ckl{\'e} and Abhishek Srivastava and Iryna Gurevych},
booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)},
year={2021},
url={https://openreview.net/forum?id=wCu6T5xFjeJ}
}
```

### Contributions

Thanks to [@Nthakur20](https://github.com/Nthakur20) for adding this dataset.