File size: 5,885 Bytes
171f296 7d0e865 171f296 7d0e865 171f296 edc4337 171f296 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
# Lint as: python3
"""REBEL"""
from __future__ import absolute_import, division, print_function
import datasets
import os
import re
import json
import logging
_DESCRIPTION = """\
REBEL is a silver dataset created for the paper REBEL: Relation Extraction By End-to-end Language generation
"""
_URL = "https://huggingface.co/datasets/Babelscape/rebel-dataset/resolve/main/rebel_dataset.zip"
_URLS = {
"train": _URL + "en_train.jsonl",
"dev": _URL + "en_val.jsonl",
"test": _URL + "en_test.jsonl",
}
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)"
_CITATION = """\
@inproceedings{huguet-cabot-navigli-2021-rebel,
title = "REBEL: Relation Extraction By End-to-end Language generation",
author = "Huguet Cabot, Pere-Llu{\'\i}s and
Navigli, Roberto",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Online and in the Barceló Bávaro Convention Centre, Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf",
}
"""
_HOMEPAGE = "https://github.com/Babelscape/rebel"
class RebelConfig(datasets.BuilderConfig):
"""BuilderConfig for REBEL."""
def __init__(self, **kwargs):
"""BuilderConfig for REBEL.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(RebelConfig, self).__init__(**kwargs)
class Rebel(datasets.GeneratorBasedBuilder):
"""Rebel 1.0"""
BUILDER_CONFIGS = [
RebelConfig(
name="REBEL",
version=datasets.Version("1.0.0"),
description=_DESCRIPTION,
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"context": datasets.Value("string"),
"triplets": datasets.Value("string"),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE,
)
def _split_generators(self, dl_manager):
if self.config.data_dir:
data_dir = self.config.data_dir
else:
data_dir = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "en_train.jsonl")}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir,"en_val.jsonl")}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir,"en_test.jsonl")}),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
logging.info("generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
article = json.loads(row)
prev_len = 0
if len(article['triples']) == 0:
continue
count = 0
for text_paragraph in article['text'].split('\n'):
if len(text_paragraph) == 0:
continue
sentences = re.split(r'(?<=[.])\s', text_paragraph)
text = ''
for sentence in sentences:
text += sentence + ' '
if any([entity['boundaries'][0] < len(text) + prev_len < entity['boundaries'][1] for entity in article['entities']]):
continue
entities = sorted([entity for entity in article['entities'] if prev_len < entity['boundaries'][1] <= len(text)+prev_len], key=lambda tup: tup['boundaries'][0])
decoder_output = '<triplet> '
for int_ent, entity in enumerate(entities):
triplets = sorted([triplet for triplet in article['triples'] if triplet['subject'] == entity and prev_len< triplet['subject']['boundaries'][1]<=len(text) + prev_len and prev_len< triplet['object']['boundaries'][1]<=len(text)+ prev_len], key=lambda tup: tup['object']['boundaries'][0])
if len(triplets) == 0:
continue
decoder_output += entity['surfaceform'] + ' <subj> '
for triplet in triplets:
decoder_output += triplet['object']['surfaceform'] + ' <obj> ' + triplet['predicate']['surfaceform'] + ' <subj> '
decoder_output = decoder_output[:-len(' <subj> ')]
decoder_output += ' <triplet> '
decoder_output = decoder_output[:-len(' <triplet> ')]
count += 1
prev_len += len(text)
if len(decoder_output) == 0:
text = ''
continue
text = re.sub('([\[\].,!?()])', r' \1 ', text.replace('()', ''))
text = re.sub('\s{2,}', ' ', text)
yield article['docid'] + '-' + str(count), {
"title": article['title'],
"context": text,
"id": article['uri'] + '-' + str(count),
"triplets": decoder_output,
}
text = ''
|