File size: 8,911 Bytes
0b4f8df
 
 
 
 
ce48899
 
0b4f8df
 
ce48899
0b4f8df
 
 
 
 
586a5f4
 
 
0b4f8df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586a5f4
0b4f8df
 
 
 
 
586a5f4
 
 
0733e6e
0b4f8df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586a5f4
0b4f8df
 
 
 
586a5f4
 
 
0b4f8df
 
586a5f4
 
 
 
 
0b4f8df
 
 
 
 
 
586a5f4
 
 
 
 
 
 
 
 
0b4f8df
586a5f4
 
 
 
 
 
 
0b4f8df
 
586a5f4
 
 
 
 
 
0b4f8df
 
586a5f4
 
 
 
 
 
 
 
 
 
 
0b4f8df
 
 
 
 
 
 
 
 
 
ce48899
 
586a5f4
0b4f8df
 
ce48899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586a5f4
ce48899
586a5f4
 
ce48899
586a5f4
ce48899
586a5f4
 
 
 
0b4f8df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce48899
586a5f4
0b4f8df
 
586a5f4
 
ce48899
 
 
 
586a5f4
 
 
 
 
 
 
 
 
0b4f8df
 
 
 
ce48899
586a5f4
ce48899
 
586a5f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import os
import random
from glob import glob
import json
from huggingface_hub import hf_hub_download
from tqdm import tqdm
import numpy as np

from astropy.io import fits
from astropy.wcs import WCS
import datasets
from datasets import DownloadManager
from fsspec.core import url_to_fs

_DESCRIPTION = (
    """SBI-16-3D is a dataset which is part of the AstroCompress project. """
    """It contains data assembled from the James Webb Space Telescope (JWST). """
    """<TODO>Describe data format</TODO>"""
)

_HOMEPAGE = "https://google.github.io/AstroCompress"

_LICENSE = "CC BY 4.0"

_URL = "https://huggingface.co/datasets/AstroCompress/SBI-16-3D/resolve/main/"

_URLS = {
    "tiny": {
        "train": "./splits/tiny_train.jsonl",
        "test": "./splits/tiny_test.jsonl",
    },
    "full": {
        "train": "./splits/full_train.jsonl",
        "test": "./splits/full_test.jsonl",
    },
}

_REPO_ID = "AstroCompress/SBI-16-3D"


class SBI_16_3D(datasets.GeneratorBasedBuilder):
    """SBI-16-3D Dataset"""

    VERSION = datasets.Version("1.0.3")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="tiny",
            version=VERSION,
            description="A small subset of the data, to test downsteam workflows.",
        ),
        datasets.BuilderConfig(
            name="full",
            version=VERSION,
            description="The full dataset",
        ),
    ]

    DEFAULT_CONFIG_NAME = "tiny"

    def __init__(self, **kwargs):
        super().__init__(version=self.VERSION, **kwargs)

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image": datasets.Array3D(shape=(None, 2048, 2048), dtype="uint16"),
                    "ra": datasets.Value("float64"),
                    "dec": datasets.Value("float64"),
                    "pixscale": datasets.Value("float64"),
                    "ntimes": datasets.Value("int64"),
                    "image_id": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation="TBD",
        )

    def _split_generators(self, dl_manager: DownloadManager):

        ret = []
        base_path = dl_manager._base_path
        locally_run = not base_path.startswith(datasets.config.HF_ENDPOINT)
        _, path = url_to_fs(base_path)

        for split in ["train", "test"]:
            if locally_run:
                split_file_location = os.path.normpath(
                    os.path.join(path, _URLS[self.config.name][split])
                )
                split_file = dl_manager.download_and_extract(split_file_location)
            else:
                split_file = hf_hub_download(
                    repo_id=_REPO_ID,
                    filename=_URLS[self.config.name][split],
                    repo_type="dataset",
                )
            with open(split_file, encoding="utf-8") as f:
                data_filenames = []
                data_metadata = []
                for line in f:
                    item = json.loads(line)
                    data_filenames.append(item["image"])
                    data_metadata.append(
                        {
                            "ra": item["ra"],
                            "dec": item["dec"],
                            "pixscale": item["pixscale"],
                            "ntimes": item["ntimes"],
                            "image_id": item["image_id"],
                        }
                    )
                if locally_run:
                    data_urls = [
                        os.path.normpath(os.path.join(path, data_filename))
                        for data_filename in data_filenames
                    ]
                    data_files = [
                        dl_manager.download(data_url) for data_url in data_urls
                    ]
                else:
                    data_urls = data_filenames
                    data_files = [
                        hf_hub_download(
                            repo_id=_REPO_ID, filename=data_url, repo_type="dataset"
                        )
                        for data_url in data_urls
                    ]
            ret.append(
                datasets.SplitGenerator(
                    name=(
                        datasets.Split.TRAIN
                        if split == "train"
                        else datasets.Split.TEST
                    ),
                    gen_kwargs={
                        "filepaths": data_files,
                        "split_file": split_file,
                        "split": split,
                        "data_metadata": data_metadata,
                    },
                ),
            )
        return ret

    def _generate_examples(self, filepaths, split_file, split, data_metadata):
        """Generate GBI-16-4D examples"""

        for idx, (filepath, item) in enumerate(zip(filepaths, data_metadata)):
            task_instance_key = f"{self.config.name}-{split}-{idx}"
            with fits.open(filepath, memmap=False) as hdul:
                # the first axis is integrations one, so we take the first element
                # the second axis is the groups (time) axis and varies between images
                image_data = hdul["SCI"].data[0, :, :, :]  # .tolist()
                yield task_instance_key, {**{"image": image_data}, **item}


def get_fits_footprint(fits_path):
    """
    Process a FITS file to extract WCS information and calculate the footprint.

    Parameters:
    fits_path (str): Path to the FITS file.

    Returns:
    tuple: A tuple containing the WCS footprint coordinates.
    """
    with fits.open(fits_path) as hdul:
        hdul[1].data = hdul[1].data[0, 0]
        wcs = WCS(hdul[1].header)
        shape = sorted(tuple(wcs.pixel_shape))[:2]
        footprint = wcs.calc_footprint(axes=shape)
        coords = list(footprint.flatten())
    return coords


def calculate_pixel_scale(header):
    """
    Calculate the pixel scale in arcseconds per pixel from a FITS header.

    Parameters:
    header (astropy.io.fits.header.Header): The FITS header containing WCS information.

    Returns:
    Mean of the pixel scales in x and y.
    """

    # Calculate the pixel scales in arcseconds per pixel
    pixscale_x = header.get("CDELT1", np.nan)
    pixscale_y = header.get("CDELT2", np.nan)

    return np.mean([pixscale_x, pixscale_y])


def make_split_jsonl_files(
    config_type="tiny", data_dir="./data", outdir="./splits", seed=42
):
    """
    Create jsonl files for the SBI-16-3D dataset.

    config_type: str, default="tiny"
        The type of split to create. Options are "tiny" and "full".
    data_dir: str, default="./data"
        The directory where the FITS files are located.
    outdir: str, default="./splits"
        The directory where the jsonl files will be created.
    seed: int, default=42
        The seed for the random split.
    """
    random.seed(seed)
    os.makedirs(outdir, exist_ok=True)

    fits_files = glob(os.path.join(data_dir, "*.fits"))
    random.shuffle(fits_files)
    if config_type == "tiny":
        train_files = fits_files[:2]
        test_files = fits_files[2:3]
    elif config_type == "full":
        split_idx = int(0.8 * len(fits_files))
        train_files = fits_files[:split_idx]
        test_files = fits_files[split_idx:]
    else:
        raise ValueError("Unsupported config_type. Use 'tiny' or 'full'.")

    def create_jsonl(files, split_name):
        output_file = os.path.join(outdir, f"{config_type}_{split_name}.jsonl")
        with open(output_file, "w") as out_f:
            for file in tqdm(files):
                # print(file, flush=True, end="...")
                with fits.open(file, memmap=False) as hdul:
                    image_id = os.path.basename(file).split(".fits")[0]
                    ra = hdul["SCI"].header.get("CRVAL1", 0)
                    dec = hdul["SCI"].header.get("CRVAL2", 0)
                    pixscale = calculate_pixel_scale(hdul["SCI"].header)
                    footprint = get_fits_footprint(file)
                    # get the number of groups per int
                    ntimes = hdul["SCI"].data.shape[1]
                    item = {
                        "image_id": image_id,
                        "image": file,
                        "ra": ra,
                        "dec": dec,
                        "pixscale": pixscale,
                        "ntimes": ntimes,
                        "footprint": footprint,
                    }
                    out_f.write(json.dumps(item) + "\n")

    create_jsonl(train_files, "train")
    create_jsonl(test_files, "test")


if __name__ == "__main__":
    make_split_jsonl_files("tiny")
    make_split_jsonl_files("full")