File size: 8,911 Bytes
0b4f8df ce48899 0b4f8df ce48899 0b4f8df 586a5f4 0b4f8df 586a5f4 0b4f8df 586a5f4 0733e6e 0b4f8df 586a5f4 0b4f8df 586a5f4 0b4f8df 586a5f4 0b4f8df 586a5f4 0b4f8df 586a5f4 0b4f8df 586a5f4 0b4f8df 586a5f4 0b4f8df ce48899 586a5f4 0b4f8df ce48899 586a5f4 ce48899 586a5f4 ce48899 586a5f4 ce48899 586a5f4 0b4f8df ce48899 586a5f4 0b4f8df 586a5f4 ce48899 586a5f4 0b4f8df ce48899 586a5f4 ce48899 586a5f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import os
import random
from glob import glob
import json
from huggingface_hub import hf_hub_download
from tqdm import tqdm
import numpy as np
from astropy.io import fits
from astropy.wcs import WCS
import datasets
from datasets import DownloadManager
from fsspec.core import url_to_fs
_DESCRIPTION = (
"""SBI-16-3D is a dataset which is part of the AstroCompress project. """
"""It contains data assembled from the James Webb Space Telescope (JWST). """
"""<TODO>Describe data format</TODO>"""
)
_HOMEPAGE = "https://google.github.io/AstroCompress"
_LICENSE = "CC BY 4.0"
_URL = "https://huggingface.co/datasets/AstroCompress/SBI-16-3D/resolve/main/"
_URLS = {
"tiny": {
"train": "./splits/tiny_train.jsonl",
"test": "./splits/tiny_test.jsonl",
},
"full": {
"train": "./splits/full_train.jsonl",
"test": "./splits/full_test.jsonl",
},
}
_REPO_ID = "AstroCompress/SBI-16-3D"
class SBI_16_3D(datasets.GeneratorBasedBuilder):
"""SBI-16-3D Dataset"""
VERSION = datasets.Version("1.0.3")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="tiny",
version=VERSION,
description="A small subset of the data, to test downsteam workflows.",
),
datasets.BuilderConfig(
name="full",
version=VERSION,
description="The full dataset",
),
]
DEFAULT_CONFIG_NAME = "tiny"
def __init__(self, **kwargs):
super().__init__(version=self.VERSION, **kwargs)
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Array3D(shape=(None, 2048, 2048), dtype="uint16"),
"ra": datasets.Value("float64"),
"dec": datasets.Value("float64"),
"pixscale": datasets.Value("float64"),
"ntimes": datasets.Value("int64"),
"image_id": datasets.Value("string"),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation="TBD",
)
def _split_generators(self, dl_manager: DownloadManager):
ret = []
base_path = dl_manager._base_path
locally_run = not base_path.startswith(datasets.config.HF_ENDPOINT)
_, path = url_to_fs(base_path)
for split in ["train", "test"]:
if locally_run:
split_file_location = os.path.normpath(
os.path.join(path, _URLS[self.config.name][split])
)
split_file = dl_manager.download_and_extract(split_file_location)
else:
split_file = hf_hub_download(
repo_id=_REPO_ID,
filename=_URLS[self.config.name][split],
repo_type="dataset",
)
with open(split_file, encoding="utf-8") as f:
data_filenames = []
data_metadata = []
for line in f:
item = json.loads(line)
data_filenames.append(item["image"])
data_metadata.append(
{
"ra": item["ra"],
"dec": item["dec"],
"pixscale": item["pixscale"],
"ntimes": item["ntimes"],
"image_id": item["image_id"],
}
)
if locally_run:
data_urls = [
os.path.normpath(os.path.join(path, data_filename))
for data_filename in data_filenames
]
data_files = [
dl_manager.download(data_url) for data_url in data_urls
]
else:
data_urls = data_filenames
data_files = [
hf_hub_download(
repo_id=_REPO_ID, filename=data_url, repo_type="dataset"
)
for data_url in data_urls
]
ret.append(
datasets.SplitGenerator(
name=(
datasets.Split.TRAIN
if split == "train"
else datasets.Split.TEST
),
gen_kwargs={
"filepaths": data_files,
"split_file": split_file,
"split": split,
"data_metadata": data_metadata,
},
),
)
return ret
def _generate_examples(self, filepaths, split_file, split, data_metadata):
"""Generate GBI-16-4D examples"""
for idx, (filepath, item) in enumerate(zip(filepaths, data_metadata)):
task_instance_key = f"{self.config.name}-{split}-{idx}"
with fits.open(filepath, memmap=False) as hdul:
# the first axis is integrations one, so we take the first element
# the second axis is the groups (time) axis and varies between images
image_data = hdul["SCI"].data[0, :, :, :] # .tolist()
yield task_instance_key, {**{"image": image_data}, **item}
def get_fits_footprint(fits_path):
"""
Process a FITS file to extract WCS information and calculate the footprint.
Parameters:
fits_path (str): Path to the FITS file.
Returns:
tuple: A tuple containing the WCS footprint coordinates.
"""
with fits.open(fits_path) as hdul:
hdul[1].data = hdul[1].data[0, 0]
wcs = WCS(hdul[1].header)
shape = sorted(tuple(wcs.pixel_shape))[:2]
footprint = wcs.calc_footprint(axes=shape)
coords = list(footprint.flatten())
return coords
def calculate_pixel_scale(header):
"""
Calculate the pixel scale in arcseconds per pixel from a FITS header.
Parameters:
header (astropy.io.fits.header.Header): The FITS header containing WCS information.
Returns:
Mean of the pixel scales in x and y.
"""
# Calculate the pixel scales in arcseconds per pixel
pixscale_x = header.get("CDELT1", np.nan)
pixscale_y = header.get("CDELT2", np.nan)
return np.mean([pixscale_x, pixscale_y])
def make_split_jsonl_files(
config_type="tiny", data_dir="./data", outdir="./splits", seed=42
):
"""
Create jsonl files for the SBI-16-3D dataset.
config_type: str, default="tiny"
The type of split to create. Options are "tiny" and "full".
data_dir: str, default="./data"
The directory where the FITS files are located.
outdir: str, default="./splits"
The directory where the jsonl files will be created.
seed: int, default=42
The seed for the random split.
"""
random.seed(seed)
os.makedirs(outdir, exist_ok=True)
fits_files = glob(os.path.join(data_dir, "*.fits"))
random.shuffle(fits_files)
if config_type == "tiny":
train_files = fits_files[:2]
test_files = fits_files[2:3]
elif config_type == "full":
split_idx = int(0.8 * len(fits_files))
train_files = fits_files[:split_idx]
test_files = fits_files[split_idx:]
else:
raise ValueError("Unsupported config_type. Use 'tiny' or 'full'.")
def create_jsonl(files, split_name):
output_file = os.path.join(outdir, f"{config_type}_{split_name}.jsonl")
with open(output_file, "w") as out_f:
for file in tqdm(files):
# print(file, flush=True, end="...")
with fits.open(file, memmap=False) as hdul:
image_id = os.path.basename(file).split(".fits")[0]
ra = hdul["SCI"].header.get("CRVAL1", 0)
dec = hdul["SCI"].header.get("CRVAL2", 0)
pixscale = calculate_pixel_scale(hdul["SCI"].header)
footprint = get_fits_footprint(file)
# get the number of groups per int
ntimes = hdul["SCI"].data.shape[1]
item = {
"image_id": image_id,
"image": file,
"ra": ra,
"dec": dec,
"pixscale": pixscale,
"ntimes": ntimes,
"footprint": footprint,
}
out_f.write(json.dumps(item) + "\n")
create_jsonl(train_files, "train")
create_jsonl(test_files, "test")
if __name__ == "__main__":
make_split_jsonl_files("tiny")
make_split_jsonl_files("full")
|