File size: 22,432 Bytes
065fee7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
# Copyright 2021 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# https://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from enum import IntEnum
import json
from multiprocessing import Pool
import pathlib
import numpy as np
import pandas as pd
BRANCH_ARTIFACTS_DIR = (
pathlib.Path(__file__).parent.resolve()
/ "googleapiclient"
/ "discovery_cache"
/ "documents"
)
MAIN_ARTIFACTS_DIR = (
pathlib.Path(__file__).parent.resolve()
/ ".."
/ "main"
/ "googleapiclient"
/ "discovery_cache"
/ "documents"
)
MULTIPROCESSING_NUM_PER_BATCH = 5
MULTIPROCESSING_NUM_AGENTS = 10
class ChangeType(IntEnum):
UNKNOWN = 0
DELETED = 1
ADDED = 2
CHANGED = 3
class DirectoryDoesNotExist(ValueError):
"""Raised when the specified directory does not exist."""
pass
class ChangeSummary:
"""Represents the change summary between 2 directories containing \
artifacts.
"""
def __init__(self, new_artifacts_dir, current_artifacts_dir, temp_dir, file_list):
"""Initializes an instance of a ChangeSummary.
Args:
new_artifacts_dir (str): The relative path to the directory with the
new discovery artifacts.
current_artifacts_dir (str): The relative path to the directory with
the current discovery artifacts.
temp_dir (str): The relative path to the directory used for
temporary storage where intermediate files will be stored.
file_list (list): A list of strings containing files to analyze.
"""
self._file_list = file_list
self._new_artifacts_dir = pathlib.Path(new_artifacts_dir)
self._current_artifacts_dir = pathlib.Path(current_artifacts_dir)
self._temp_dir = pathlib.Path(temp_dir)
# Sanity checks to ensure directories exist
self._raise_if_directory_not_found(self._new_artifacts_dir)
self._raise_if_directory_not_found(self._current_artifacts_dir)
self._raise_if_directory_not_found(self._temp_dir)
def _raise_if_directory_not_found(self, directory):
"""Raises if the `directory` doesn't exist
args:
directory (str): The relative path to the `directory`
"""
if not pathlib.Path(directory).exists():
raise DirectoryDoesNotExist(
"Directory does not exist : {0}".format(directory)
)
def _load_json_to_dataframe(self, file_path):
"""Returns a pandas dataframe from the json file provided.
args:
file_path (str): The relative path to the discovery artifact to
parse.
"""
# Create an empty dataframe as we will need to return it if the file
# doesn't exist
dataframe_doc = pd.DataFrame()
if pathlib.Path(file_path).is_file():
with open(file_path, "r") as f:
# Now load the json file into a pandas dataframe as a flat table
dataframe_doc = pd.json_normalize(json.load(f))
return dataframe_doc
def _get_discovery_differences(self, filename):
"""Returns a pandas dataframe which contains the differences with the
current and new discovery artifact directories, corresponding to the
file name provided.
args:
filename (str): The name of the discovery artifact to parse.
"""
# The paths of the 2 discovery artifacts to compare
current_artifact_path = self._current_artifacts_dir / filename
new_artifact_path = self._new_artifacts_dir / filename
# Use a helper functions to load the discovery artifacts into pandas
# dataframes
current_doc = self._load_json_to_dataframe(current_artifact_path)
new_doc = self._load_json_to_dataframe(new_artifact_path)
# Concatenate the 2 dataframes, transpose them, and create
# a new dataframe called combined_docs with columns
# `Key`, `CurrentValue`, `NewValue`.
combined_docs = (
pd.concat([current_doc, new_doc], keys=["CurrentValue", "NewValue"])
# Drop the index column
.reset_index(drop=True, level=1)
# Transpose the DataFrame, Resulting Columns should be
# ["Key", "CurrentValue", "New Value"]
.rename_axis(["Key"], axis=1).transpose()
# Drop the index column
.reset_index()
)
# When discovery documents are added, the column `CurrentValue` will
# not exist. In that case, we'll just populate with `np.nan`.
if "CurrentValue" not in combined_docs.columns:
combined_docs["CurrentValue"] = np.nan
# When discovery documents are deleted, the column `NewValue` will
# not exist. In that case, we'll just populate with `np.nan`.
if "NewValue" not in combined_docs.columns:
combined_docs["NewValue"] = np.nan
# Split the Key into 2 columns for `Parent` and `Child` in order
# to group keys with the same parents together to summarize the changes
# by parent.
parent_child_df = combined_docs["Key"].str.rsplit(".", n=1, expand=True)
# Rename the columns and join them with the combined_docs dataframe.
# If we only have a `Parent` column, it means that the Key doesn't have
# any children.
if len(parent_child_df.columns) == 1:
parent_child_df.columns = ["Parent"]
else:
parent_child_df.columns = ["Parent", "Child"]
combined_docs = combined_docs.join(parent_child_df)
# Create a new column `Added` to identify rows which have new keys.
combined_docs["Added"] = np.where(
combined_docs["CurrentValue"].isnull(), True, False
)
# Create a new column `Deleted` to identify rows which have deleted keys.
combined_docs["Deleted"] = np.where(
combined_docs["NewValue"].isnull(), True, False
)
# Aggregate the keys added by grouping keys with the same parents
# together to summarize the changes by parent rather than by key.
parent_added_agg = (
combined_docs.groupby("Parent")
.Added.value_counts(normalize=True)
.reset_index(name="Proportion")
)
# Add a column NumLevels to inicate the number of levels in the tree
# which will allow us to sort the parents in hierarchical order.
parent_added_agg["NumLevels"] = (
parent_added_agg["Parent"].str.split(".").apply(lambda x: len(x))
)
# Aggregate the keys deleted by grouping keys with the same parents
# together to summarize the changes by parent rather than by key.
parent_deleted_agg = (
combined_docs.groupby("Parent")
.Deleted.value_counts(normalize=True)
.reset_index(name="Proportion")
)
# Add a column NumLevels to inicate the number of levels in the tree
# which will allow us to sort the parents in hierarchical order.
parent_deleted_agg["NumLevels"] = (
parent_added_agg["Parent"].str.split(".").apply(lambda x: len(x))
)
# Create a list of all parents that have been added in hierarchical
# order. When `Proportion` is 1, it means that the parent is new as all
# children keys have been added.
all_added = (
parent_added_agg[
(parent_added_agg["Proportion"] == 1)
& (parent_added_agg["Added"] == True)
][["Parent", "NumLevels"]]
.sort_values("NumLevels", ascending=True)
.Parent.to_list()
)
# Create a list of all parents that have been deleted in hierarchical
# order. When `Proportion` is 1, it means that the parent is new as all
# children keys have been deleted.
all_deleted = (
parent_deleted_agg[
(parent_deleted_agg["Proportion"] == 1)
& (parent_deleted_agg["Deleted"] == True)
][["Parent", "NumLevels"]]
.sort_values("NumLevels", ascending=True)
.Parent.to_list()
)
# Go through the list of parents that have been added. If we find any
# keys with parents which are a substring of the parent in this list,
# then it means that the entire parent is new. We don't need verbose
# information about the children, so we replace the parent.
for i in range(0, len(all_added)):
word = all_added[i]
combined_docs.Parent = np.where(
combined_docs["Parent"].str.startswith(word), word, combined_docs.Parent
)
# Go through the list of parents that have been deleted. If we find any
# keys with parents which are a substring of the parent in this list,
# then it means that the entire parent is deleted. We don't need verbose
# information about the children, so we replace the parent.
for i in range(0, len(all_deleted)):
word = all_deleted[i]
combined_docs.Parent = np.where(
combined_docs["Parent"].str.startswith(word), word, combined_docs.Parent
)
# Create a new dataframe with only the keys which have changed
docs_diff = combined_docs[
combined_docs["CurrentValue"] != combined_docs["NewValue"]
].copy(deep=False)
# Get the API and Version from the file name but exclude the extension.
api_version_string = filename.split(".")[:-1]
# Create columns `Name` and `Version` using the version string
docs_diff["Name"] = api_version_string[0]
docs_diff["Version"] = ".".join(api_version_string[1:])
# These conditions are used as arguments in the `np.where` function
# below.
deleted_condition = docs_diff["NewValue"].isnull()
added_condition = docs_diff["CurrentValue"].isnull()
# Create a new `ChangeType` column. The `np.where()` function is like a
# tenary operator. When the `deleted_condition` is `True`, the
# `ChangeType` will be `ChangeType.Deleted`. If the added_condition is
# `True` the `ChangeType` will be `ChangeType.Added`, otherwise the
# `ChangeType` will be `ChangeType.Changed`.
docs_diff["ChangeType"] = np.where(
deleted_condition,
ChangeType.DELETED,
np.where(added_condition, ChangeType.ADDED, ChangeType.CHANGED),
)
# Filter out keys which rarely affect functionality. For example:
# {"description", "documentation", "enum", "etag", "revision", "title",
# "url", "rootUrl"}
docs_diff = docs_diff[
~docs_diff["Key"].str.contains(
"|".join(self._get_keys_to_ignore()), case=False
)
]
# Group keys with similar parents together and create a new column
# called 'Count' which indicates the number of keys that have been
# grouped together. The reason for the count column is that when keys
# have the same parent, we group them together to improve readability.
docs_diff_with_count = (
docs_diff.groupby(
["Parent", "Added", "Deleted", "Name", "Version", "ChangeType"]
)
.size()
.reset_index(name="Count")
)
# Add counts column
docs_diff = docs_diff.merge(docs_diff_with_count)
# When the count is greater than 1, update the key with the name of the
# parent since we are consolidating keys with the same parent.
docs_diff.loc[docs_diff["Count"] > 1, "Key"] = docs_diff["Parent"]
return docs_diff[
["Key", "Added", "Deleted", "Name", "Version", "ChangeType", "Count"]
].drop_duplicates()
def _build_summary_message(self, api_name, is_feature):
"""Returns a string containing the summary for a given api. The string
returned will be in the format `fix(<api_name>): update the API`
when `is_feature=False` and `feat(<api_name>)!: update the API`
when `is_feature=True`.
args:
api_name (str): The name of the api to include in the summary.
is_feature (bool): If True, include the prefix `feat` otherwise use
`fix`
"""
# Build the conventional commit string based on the arguments provided
commit_type = "feat" if is_feature else "fix"
return "{0}({1}): update the api".format(commit_type, api_name)
def _get_keys_to_ignore(self):
"""Returns a list of strings with keys to ignore because they rarely
affect functionality.
args: None
"""
keys_to_ignore = [
"description",
"documentation",
"enum",
"etag",
"revision",
"title",
"url",
"rootUrl",
]
return keys_to_ignore
def _get_stable_versions(self, versions):
"""Returns a pandas series `pd.Series()` of boolean values,
corresponding to the given series, indicating whether the version is
considered stable or not.
args:
versions (object): a pandas series containing version
information for all discovery artifacts.
"""
# Use a regex on the version to find versions with the pattern
# <v>.<0-9>.<0-9>.<0-9> . Any api that matches this pattern will be
# labeled as stable. In other words, v1, v1.4 and v1.4.5 is stable
# but v1b1 v1aplha and v1beta1 is not stable.
return versions.str.extract(r"(v\d?\.?\d?\.?\d+$)").notnull()
def _get_summary_and_write_to_disk(self, dataframe, directory):
"""Writes summary information to file about changes made to discovery
artifacts based on the provided dataframe and returns a dataframe
with the same. The file `'allapis.dataframe'` is saved to the current
working directory.
args:
dataframe (object): a pandas dataframe containing summary change
information for all discovery artifacts
directory (str): path where the summary file should be saved
"""
dataframe["IsStable"] = self._get_stable_versions(dataframe["Version"])
# Create a filter for features, which contains only rows which have keys
# that have been deleted or added, that will be used as an argument in
# the `np.where()` call below.
filter_features = (dataframe["ChangeType"] == ChangeType.DELETED) | (
dataframe["ChangeType"] == ChangeType.ADDED
)
# Create a new column `IsFeature` to indicate which rows should be
# considered as features.
dataframe["IsFeature"] = np.where(filter_features, True, np.nan)
# Create a new column `IsFeatureAggregate` which will be used to
# summarize the api changes. We can either have feature or fix but not
# both.
dataframe["IsFeatureAggregate"] = dataframe.groupby("Name").IsFeature.transform(
lambda x: x.any()
)
# Create a new column `Summary`, which will contain a string with the
# conventional commit message.
dataframe["Summary"] = np.vectorize(self._build_summary_message)(
dataframe["Name"], dataframe["IsFeatureAggregate"]
)
# Write the final dataframe to disk as it will be used in the
# buildprbody.py script
dataframe.to_csv(directory / "allapis.dataframe")
return dataframe
def _write_verbose_changes_to_disk(self, dataframe, directory, summary_df):
"""Writes verbose information to file about changes made to discovery
artifacts based on the provided dataframe. A separate file is saved
for each api in the current working directory. The extension of the
files will be `'.verbose'`.
args:
dataframe (object): a pandas dataframe containing verbose change
information for all discovery artifacts
directory (str): path where the summary file should be saved
summary_df (object): A dataframe containing a summary of the changes
"""
# Array of strings which will contains verbose change information for
# each api
verbose_changes = []
# Sort the dataframe to minimize file operations below.
dataframe.sort_values(
by=["Name", "Version", "ChangeType"], ascending=True, inplace=True
)
# Select only the relevant columns. We need to create verbose output
# by Api Name, Version and ChangeType so we need to group by these
# columns.
change_type_groups = dataframe[
["Name", "Version", "ChangeType", "Key", "Count"]
].groupby(["Name", "Version", "ChangeType"])
lastApi = ""
lastVersion = ""
lastType = ChangeType.UNKNOWN
f = None
for name, group in change_type_groups:
currentApi = name[0]
currentVersion = name[1]
currentType = name[2]
# We need to handing file opening and closing when processing an API
# which is different from the previous one
if lastApi != currentApi:
# If we are processing a new api, close the file used for
# processing the previous API
if f is not None:
f.writelines(verbose_changes)
f.close()
f = None
# Clear the array of strings with information from the previous
# api and reset the last version
verbose_changes = []
lastVersion = ""
# Create a file which contains verbose changes for the current
# API being processed
filename = "{0}.verbose".format(currentApi)
f = open(pathlib.Path(directory / filename), "a")
lastApi = currentApi
# Create a filter with only the rows for the current API
current_api_filter = summary_df["Name"] == currentApi
# Get the string in the `Summary` column for the current api and
# append it to `verbose_changes`. The `Summary` column contains
# the conventional commit message. Use pandas.Series.iloc[0] to
# retrieve only the first elemnt, since all the values in the
# summary column are the same for a given API.
verbose_changes.append(summary_df[current_api_filter].Summary.iloc[0])
# If the version has changed, we need to create append a new heading
# in the verbose summary which contains the api and version.
if lastVersion != currentVersion:
# Append a header string with the API and version
verbose_changes.append(
"\n\n#### {0}:{1}\n\n".format(currentApi, currentVersion)
)
lastVersion = currentVersion
lastType = ChangeType.UNKNOWN
# Whenever the change type is different, we need to create a new
# heading for the group of keys with the same change type.
if currentType != lastType:
if currentType == ChangeType.DELETED:
verbose_changes.append("\nThe following keys were deleted:\n")
elif currentType == ChangeType.ADDED:
verbose_changes.append("\nThe following keys were added:\n")
else:
verbose_changes.append("\nThe following keys were changed:\n")
lastType = currentType
# Append the keys, and corresponding count, in the same change
# type group.
verbose_changes.extend(
[
"- {0} (Total Keys: {1})\n".format(row["Key"], row["Count"])
for index, row in group[["Key", "Count"]].iterrows()
]
)
# Make sure to close the last file and write the changes.
if f is not None:
f.writelines(verbose_changes)
f.close()
f = None
def detect_discovery_changes(self):
"""Writes a summary of the changes to the discovery artifacts to disk
at the path specified in `temp_dir`.
args: None
"""
result = pd.DataFrame()
# Process files in parallel to improve performance
with Pool(processes=MULTIPROCESSING_NUM_AGENTS) as pool:
if len(self._file_list):
result = pd.concat(
pool.map(
self._get_discovery_differences,
self._file_list,
MULTIPROCESSING_NUM_PER_BATCH,
)
)
if len(result):
# Sort the resulting dataframe by `Name`, `Version`, `ChangeType`
# and `Key`
sort_columns = ["Name", "Version", "ChangeType", "Key"]
result.sort_values(by=sort_columns, ascending=True, inplace=True)
# Create a folder which be used by the `createcommits.sh` and
# `buildprbody.py` scripts.
pathlib.Path(self._temp_dir).mkdir(exist_ok=True)
# Create a summary which contains a conventional commit message
# for each API and write it to disk.
summary_df = self._get_summary_and_write_to_disk(result, self._temp_dir)
# Create verbose change information for each API which contains
# a list of changes by key and write it to disk.
self._write_verbose_changes_to_disk(result, self._temp_dir, summary_df)
|