File size: 5,556 Bytes
065fee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# Data Science Library Integrations"
   ]
  },
  {
   "cell_type": "markdown",
   "source": [
    "# Overview\n",
    "`redshift_connector` provides integration with [pandas](https://github.com/pandas-dev/pandas) and [numpy](https://github.com/numpy/numpy) to enable everyone who works with data a simple interface for reading and writing data to and from Amazon Redshift."
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "markdown",
   "source": [
    "## Retrieving data as a `pandas.DataFrame`\n",
    "`redshift_connector`'s `fetch_dataframe()` method allows users to directly retrieve result sets as a `pandas.DataFrame`. An example workflow using this function is shown below"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "outputs": [],
   "source": [
    "import pandas\n",
    "import redshift_connector\n",
    "with redshift_connector.connect(\n",
    "    host='examplecluster.abc123xyz789.us-west-1.redshift.amazonaws.com',\n",
    "    database='dev',\n",
    "    user='awsuser',\n",
    "    password='my_password'\n",
    ") as conn:\n",
    "    with conn.cursor() as cursor:\n",
    "        cursor.execute(\"create Temp table book(bookname varchar,author‎ varchar)\")\n",
    "        cursor.executemany(\"insert into book (bookname, author‎) values (%s, %s)\",\n",
    "                           [\n",
    "                               ('One Hundred Years of Solitude', 'Gabriel García Márquez'),\n",
    "                               ('A Brief History of Time', 'Stephen Hawking')\n",
    "\n",
    "                           ])\n",
    "        cursor.execute(\"select * from book\")\n",
    "        result: pandas.DataFrame = cursor.fetch_dataframe()\n",
    "        print(result)"
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%%\n"
    }
   }
  },
  {
   "cell_type": "markdown",
   "source": [
    "## Retrieving data as a `numpy.ndarray`\n",
    "`redshift_connector`'s `fetch_numpy_array()` method allows users to directly retrieve result sets as a `numpy.ndarray`. An example workflow using this function is shown below"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "outputs": [],
   "source": [
    "import numpy\n",
    "import redshift_connector\n",
    "with redshift_connector.connect(\n",
    "    host='examplecluster.abc123xyz789.us-west-1.redshift.amazonaws.com',\n",
    "    database='dev',\n",
    "    user='awsuser',\n",
    "    password='my_password'\n",
    ") as conn:\n",
    "    with conn.cursor() as cursor:\n",
    "        cursor.execute(\"create Temp table book(bookname varchar,author‎ varchar)\")\n",
    "        cursor.executemany(\"insert into book (bookname, author‎) values (%s, %s)\",\n",
    "                           [\n",
    "                               ('One Hundred Years of Solitude', 'Gabriel García Márquez'),\n",
    "                               ('A Brief History of Time', 'Stephen Hawking')\n",
    "\n",
    "                           ])\n",
    "        cursor.execute(\"select * from book\")\n",
    "        result: numpy.ndarray = cursor.fetch_numpy_array()\n",
    "        print(result)\n"
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%%\n"
    }
   }
  },
  {
   "cell_type": "markdown",
   "source": [
    "## Inserting a `pandas.DataFrame` into an Amazon Redshift database table\n",
    "`redshift_connector`'s `write_dataframe()` method allows users to directly insert a`pandas.DataFrame` to a database table. An example workflow using this function is shown below"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import pandas as pd\n",
    "import redshift_connector\n",
    "\n",
    "df: pd.DataFrame = pd.DataFrame(\n",
    "    np.array(\n",
    "        [\n",
    "            [\"One Hundred Years of Solitude\", \"Gabriel García Márquez\"],\n",
    "            [\"A Brief History of Time\", \"Stephen Hawking\"],\n",
    "        ]\n",
    "    ),\n",
    "    columns=[\"bookname\", \"author‎\"],\n",
    ")\n",
    "\n",
    "with redshift_connector.connect(\n",
    "    host='examplecluster.abc123xyz789.us-west-1.redshift.amazonaws.com',\n",
    "    database='dev',\n",
    "    user='awsuser',\n",
    "    password='my_password'\n",
    ") as conn:\n",
    "    with conn.cursor() as cursor:\n",
    "        cursor.execute(\"create Temp table book(bookname varchar,author‎ varchar)\")\n",
    "        cursor.write_dataframe(df, \"book\")\n",
    "        cursor.execute(\"select * from book;\")\n",
    "        result = cursor.fetchall()\n",
    "        print(result)"
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%%\n"
    }
   }
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}