File size: 5,938 Bytes
ca22e16
 
 
90f018d
 
 
 
 
 
 
302fce6
90f018d
302fce6
90f018d
 
 
302fce6
90f018d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb70757
 
90f018d
 
 
 
 
30437b3
 
90f018d
 
 
 
 
 
 
 
 
 
 
 
 
 
eb70757
90f018d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302fce6
90f018d
302fce6
 
3ca8b52
 
 
 
 
 
 
 
 
 
 
 
302fce6
3ca8b52
 
 
 
302fce6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---
license: mit
---


## General Description

MultiSetTransformerData is a large dataset designed to train and validate neural Symbolic Regression models.  It was designed to solve the Multi-Set Symbolic Skeleton Prediction (MSSP) problems, described in the paper **"Univariate Skeleton Prediction in Multivariate Systems Using Transformers"**. However, it can be used for training generic SR models as well.

This dataset consists of artificially generated **univariate symbolic skeletons**, from which mathematical expressions are sampled, which are then used to sample data sets. 
In this repository, a dataset **Q1** is presented:

* **Q1**: Consists of mathematical expressions that use up to 5 unary and binary operators (e.g., \\(1 + 1 / (\sin(2x) + 3)\\) uses five operators). It allows up to one nested operator (e.g., \\(\sin( \exp(x))\\) is allowed but \\(\sin( \exp(x^2))\\) is not).

## Dataset Structure

In the **Q1** folder, you will find a training set alongside its corresponding validation set.
Then, each folder consists of a collection of HDF5 files, as shown below:

```
β”œβ”€β”€ Q1 
β”‚   β”œβ”€β”€ training
β”‚   β”‚   β”œβ”€β”€ 0.h5
β”‚   β”‚   β”œβ”€β”€ 1.h5
β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”œβ”€β”€ validation
β”‚   β”‚   β”œβ”€β”€ 0.h5
β”‚   β”‚   β”œβ”€β”€ 1.h5
β”‚   β”‚   β”œβ”€β”€ ...
```

Each HDF5 file contains 5000 **blocks** and has the following structure:

```
{  "block_1": {
        "X": "Support vector, shape (10000, 10)",
        "Y": "Response vector, shape (10000, 10)",
        "tokenized": "Symbolic skeleton expression tokenized using vocabulary, list",
        "exprs": "Symbolic skeleton expression, str",
        "sampled_exprs": "Ten mathematical expressions sampled from a common skeleton"
    },
    "block_2": {
        "X": "Support, shape (10000, 10)",
        "Y": "Response, shape (10000, 10)",
        "tokenized": "Symbolic skeleton expression tokenized using vocabulary, list",
        "exprs": "Symbolic skeleton expression, str",
        "sampled_exprs": "Ten mathematical expressions sampled from a common skeleton"
    },
    ...
}
```

More specifically, each block corresponds to one univariate symbolic skeleton (i.e., a function without defined constant values); for example, `c + c/(c*sin(c*x_1) + c)`. 
From this skeleton, 10 random functions are sampled; for example: 

* `-2.284 + 0.48/(-sin(0.787*x_1) - 1.136)`
* `4.462 - 2.545/(3.157*sin(0.422*x_1) - 1.826)`, ...

Then, for the \\(i\\)-th function (where \\(i \in [0, 1, ..., 9]\\)), we sample a **support vector** `X[:, i]` of 10000 elements whose values are drawn from a uniform distribution \\(\mathcal{U}(-10, 10)\\).
The support vector `X[:, i]` is evaluated on the \\(i\\)-th function to obtain the response vector `Y[:, i]`.
In other words, a block contains input-output data generated from 10 **different functions that share the same symbolic skeleton**.
For instance, the following figure shows 10 sets of data generated from the symbolic skeleton `c + c/(c*sin(c*x_1) + c)`:

<p align="center">
  <img src="images/data_example.jpg" alt="alt text" width="600">
</p>

## Loading Data

Once the data is downloaded, it can be loaded using Python as follows:

```
imort os
import glob
import h5py

def open_h5(path):
    block = []
    with h5py.File(path, "r") as hf:
        # Iterate through the groups in the HDF5 file (group names are integers)
        for group_name in hf:
            group = hf[group_name]
            X = group["X"][:]
            Y = group["Y"][:]
            # Load 'tokenized' as a list of integers
            tokenized = list(group["tokenized"])
            # Load 'exprs' as a string
            exprs = group["exprs"][()].tobytes().decode("utf-8")
            # Load 'sampled_exprs' as a list of sympy expressions
            sampled_exprs = [expr_str for expr_str in group["sampled_exprs"][:].astype(str)]
            block.append([X, Y, tokenized, exprs, sampled_exprs])
    return block

train_path = 'data/Q1/training'
train_files = glob.glob(os.path.join(self.sampledData_train_path, '*.h5'))
for tfile in train_files:
    # Read block
    block = open_h5(tfile)
    # Do stuff with your data
```

## Vocabulary and Expression Generation

The table below provides the vocabulary used to construct the expressions of this dataset.

<p align="center">
  <img src="images/vocabulary.jpg" alt="alt text" width="500">
</p>

We use a method that builds the expression tree recursively in a preorder fashion, which allows us to enforce certain conditions and constraints effectively.
That is, we forbid certain combinations of operators and set a maximum limit on the nesting depth of unary operators within each other.
For example, we avoid embedding the operator \\(\text{log}\\) within the operator \\(\text{exp}\\), or vice versa, since such composition could lead to direct simplification (e.g., \\(\text{log}\left( \text{exp} (x) \right) = x\\).
We can also avoid combinations of operators that would generate extremely large values (e.g., \\(\text{exp}\left( \text{exp} (x) \right)\\) and \\(\text{sinh} \left( \text{sinh} (x) \right)\\)). 
The table below shows the forbidden operators we considered for some specific parent operators.

<p align="center">
  <img src="images/forbidden_ops.jpg" alt="alt text" width="500">
</p>


## Citation

Use this Bibtex to cite this repository

```
@INPROCEEDINGS{MultiSetSR,
author="Morales, Giorgio
and Sheppard, John W.",
editor="Bifet, Albert
and Daniu{\v{s}}is, Povilas
and Davis, Jesse
and Krilavi{\v{c}}ius, Tomas
and Kull, Meelis
and Ntoutsi, Eirini
and Puolam{\"a}ki, Kai
and {\v{Z}}liobait{\.{e}}, Indr{\.{e}}",
title="Univariate Skeleton Prediction inΒ Multivariate Systems Using Transformers",
booktitle="Machine Learning and Knowledge Discovery in Databases. Research Track and Demo Track",
year="2024",
publisher="Springer Nature Switzerland",
address="Cham",
pages="107--125",
isbn="978-3-031-70371-3"
}
```