File size: 7,259 Bytes
0d4e49d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import anthropic
import base64
import httpx
import os
import time
from mimetypes import guess_type
import random
# import numpy as np
def seed_everything(seed):
random.seed(seed)
# np.random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
# torch.manual_seed(seed)
# torch.cuda.manual_seed(seed)
# torch.backends.cudnn.deterministic = True
# env.seed(seed)
seed_everything(1)
def local_image_to_data_url(image_path):
mime_type, _ = guess_type(image_path)
if mime_type is None:
mime_type = 'application/octet-stream'
with open(image_path, "rb") as image_file:
base64_encoded_data = base64.b64encode(image_file.read()).decode('utf-8')
return base64_encoded_data
client = anthropic.Anthropic(
api_key="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",
)
# Start test
levels = [3,4,5,6,7,8]
in_context_example_num = 0 # 0, 1, 2, 4, 8
if in_context_example_num > 0:
output_path = "output/output_img_%d/"%(in_context_example_num)
input_backup_path = "input/input_backup_img_%d/"%(in_context_example_num)
else:
output_path = "output/output_img/"
input_backup_path = "input/input_backup_img/"
os.makedirs(output_path, exist_ok=True)
os.makedirs(input_backup_path, exist_ok=True)
EXAMPLE_DICT = {
3: [],
4: [],
5: [],
6: [],
7: [],
8: [],
}
# for level in levels:
# for example_id in range(8):
# curr_example_pack = {}
# curr_example_pack["image_path"] = "../example/level%d/img/%d.png"%(level, example_id)
# with open("../example/level%d/answer/%d.txt"%(level, example_id), "r") as f:
# curr_example_pack["answer"] = f.read()
# curr_example_pack["pure_text"] = "../example/level%d/pure_text/%d.txt"%(level, example_id)
# curr_example_pack["table"] = "../example/level%d/table/%d.txt"%(level, example_id)
# curr_example_pack["start_image_path"] = "../example/level%d/begin/%d.jpg"%(level, example_id)
# curr_example_pack["end_image_path"] = "../example/level%d/end/%d.jpg"%(level, example_id)
# example_path = "../example/level%d/"%(level)
# curr_example_pack["question1"] = "\n\nPlease generate the moving plan. The beginning state is:"
# curr_example_pack["question2"] = "\nThe end state is:"
# with open(example_path + "sol_%d.txt"%(example_id), "r") as f:
# curr_example_pack["answer"] = f.read()
# EXAMPLE_DICT[level].append(curr_example_pack)
import ipdb; ipdb.set_trace()
for level in levels:
os.makedirs(output_path + "level%d"%(level), exist_ok=True)
os.makedirs(input_backup_path + "level%d"%(level), exist_ok=True)
start_idx = 0
end_idx = 100
runned_term = 0
map_path = "../maps/level%d/img/"%(level)
while True:
try:
curr_id = start_idx + runned_term
if curr_id >= end_idx:
break
prompt_input_1 = '''
In this task, you will analyze a maze to determine if there is a hole in a specific position.
The following figure illustrates the appearances of the player, holes, lands, and the goal within the maze. You will need to focus on the appearance of the hole.
'''
prompt_input_2 = '''
Here is an example to illustrate how to analyze and answer the question:
'''
prompt_input_3 = '''
Example question: Is there a hole in row 3, column 3?
In this example:
- We check the position in row 3, column 3.
- According to the image, it is a land square. It does not contain a hole.
- Therefore, you will output "<Output> No".
Your output should be: "<Output> No" or "<Output> Yes", depending on whether there is a hole at the specified position.
'''
# prompt_examples = []
# image_examples = []
# if in_context_example_num > 0:
# prompt_examples.append("## Example:\n")
# example_indices = random.sample(range(8), in_context_example_num)
# for example_index in example_indices:
# this_example = EXAMPLE_DICT[level][example_index]
# image_examples.append(local_image_to_data_url(this_example["image_path"]))
# prompt_examples.append(this_example["answer"])
prompt_input_4 = "\n\nNow you will analyze the following maze and answer the question: "
with open("../maps/level%d/question/%d.txt"%(level, curr_id), "r") as f:
prompt_input_5 = f.read()
# construct
content_input_seq = []
content_input_seq.append({
"type": "text",
"text": prompt_input_1,
})
content_input_seq.append({
"type": "image",
"source": {
"type": "base64",
"media_type": "image/png",
"data": local_image_to_data_url("../prompt-visual-images/system-figure-1.png"),
}
})
content_input_seq.append({
"type": "text",
"text": prompt_input_2,
})
content_input_seq.append({
"type": "image",
"source": {
"type": "base64",
"media_type": "image/png",
"data": local_image_to_data_url("../prompt-visual-images/system-figure-2.png"),
}
})
content_input_seq.append({
"type": "text",
"text": prompt_input_3,
})
content_input_seq.append({
"type": "text",
"text": prompt_input_4,
})
content_input_seq.append({
"type": "image",
"source": {
"type": "base64",
"media_type": "image/png",
"data": local_image_to_data_url(map_path + "%d.png"%(curr_id)),
}
})
content_input_seq.append({
"type": "text",
"text": prompt_input_5,
})
response = client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1024,
system="You are a maze-solving agent playing a pixelated maze videogame.\nMazes are presented on grid maps, where each tile can be empty land, or contain a player, hole, or goal.",
messages=[
{
"role": "user",
"content": content_input_seq
},
],
)
with open(output_path + "level%d/%d.txt"%(level, curr_id), "w") as f:
f.write(response.content[0].text)
time.sleep(2)
runned_term += 1
except:
time.sleep(2)
pass
|