Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
asnq / dataset_infos.json
albertvillanova's picture
Convert dataset to Parquet
7c144b1
raw
history blame
2.47 kB
{
"default": {
"description": "ASNQ is a dataset for answer sentence selection derived from\nGoogle's Natural Questions (NQ) dataset (Kwiatkowski et al. 2019).\n\nEach example contains a question, candidate sentence, label indicating whether or not\nthe sentence answers the question, and two additional features --\nsentence_in_long_answer and short_answer_in_sentence indicating whether ot not the\ncandidate sentence is contained in the long_answer and if the short_answer is in the candidate sentence.\n\nFor more details please see\nhttps://arxiv.org/pdf/1911.04118.pdf\n\nand\n\nhttps://research.google/pubs/pub47761/\n",
"citation": "@article{garg2019tanda,\n title={TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection},\n author={Siddhant Garg and Thuy Vu and Alessandro Moschitti},\n year={2019},\n eprint={1911.04118},\n}\n",
"homepage": "https://github.com/alexa/wqa_tanda#answer-sentence-natural-questions-asnq",
"license": "",
"features": {
"question": {
"dtype": "string",
"_type": "Value"
},
"sentence": {
"dtype": "string",
"_type": "Value"
},
"label": {
"names": [
"neg",
"pos"
],
"_type": "ClassLabel"
},
"sentence_in_long_answer": {
"dtype": "bool",
"_type": "Value"
},
"short_answer_in_sentence": {
"dtype": "bool",
"_type": "Value"
}
},
"builder_name": "parquet",
"dataset_name": "asnq",
"config_name": "default",
"version": {
"version_str": "1.0.0",
"major": 1,
"minor": 0,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 3656865072,
"num_examples": 20377568,
"dataset_name": null
},
"validation": {
"name": "validation",
"num_bytes": 168004403,
"num_examples": 930062,
"dataset_name": null
}
},
"download_size": 2496835395,
"dataset_size": 3824869475,
"size_in_bytes": 6321704870
}
}