File size: 7,052 Bytes
b2eb9f0
 
8364cdb
 
 
 
 
 
 
 
 
 
 
 
b2eb9f0
8364cdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d991ef
8364cdb
 
 
94b25f2
8364cdb
 
 
31efd18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8364cdb
e547fec
8364cdb
 
 
 
 
 
 
22efe7d
 
 
 
8364cdb
 
 
 
 
22efe7d
 
 
 
 
2d991ef
 
 
8364cdb
 
e547fec
 
8364cdb
e547fec
 
8364cdb
 
 
 
2d991ef
 
8364cdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d991ef
 
8364cdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94b25f2
8364cdb
db803a4
8364cdb
94b25f2
8364cdb
94b25f2
8364cdb
94b25f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
---
license: cc-by-sa-3.0
task_categories:
- table-question-answering
- question-answering
language:
- en
tags:
- documents
- tables
- VQA
pretty_name: WikiDT
size_categories:
- 100K<n<1M
---
# WikiDT: Wikipedia Table Document dataset for table extraction and visual question answering

## Dataset Description

- **Homepage:** 
- **Repository:** 
- **Paper:** 
- **Leaderboard:** 
- **Point of Contact:** 

### Dataset Summary

The WikiDT contains multi-level annotations and labels for the question-answering task based on images. Meanwhile, as the questions are answered from some table on the image, and WikiDT provides the table annotation to facilitate the diagnosis of the models and decompose the problem, WikiDT can be also directly used as a 
table recognition dataset.

The dataset contains 16,887 Wikipedia screenshot, which are segmented to 54,032 subpages since the full screenshots are potentially long. In total, there's 159,905 tables in the dataset. The number of question-answer samples is 70,652. Each QA sample contains triplets of <question, answer, full-page screenshot filename>, and is additionally annotated with retrieval labels (which subpage, and which table). 53,698 QA samples also have SQL annotation. 

For each subpage, OCR and table extraction annotations from two sources are available. While rendering the screenshots, the ground truth table annotation is recorded. Meanwhile, to make the dataset realistic, we also requested OCR and table extraction from [Amazon Textract](https://aws.amazon.com/textract/) for each subpage (results obtained during Feb.28, 2023 - Mar.6, 2023). 

### Languages

English

## Dataset Structure

Once downloaded, the WikiDT has the following parts. The downloaded files are around 77GB. Please ensure you have at least 160GB since we will be extract individual files from the tars.

```
.
β”œβ”€β”€ WikiTableExtraction
β”‚Β Β  β”œβ”€β”€ detection.partaa
β”‚Β Β  β”œβ”€β”€ detection.partab
β”‚Β Β  β”œβ”€β”€ detection.partac
β”‚Β Β  β”œβ”€β”€ detection.partad
β”‚Β Β  β”œβ”€β”€ detection.partae
β”‚Β Β  β”œβ”€β”€ detection.partaf
β”‚Β Β  β”œβ”€β”€ detection.partag
β”‚Β Β  β”œβ”€β”€ structure.partaa
β”‚Β Β  β”œβ”€β”€ structure.partab
β”‚Β Β  β”œβ”€β”€ structure.partac
β”‚Β Β  β”œβ”€β”€ structure.partad
β”‚Β Β  └── structure.partae
β”œβ”€β”€ images.partaa
β”œβ”€β”€ images.partab
β”œβ”€β”€ images.partac
β”œβ”€β”€ images.partad
β”œβ”€β”€ images.partae
β”œβ”€β”€ images.partaf
β”œβ”€β”€ images.partag
β”œβ”€β”€ images.partah
β”œβ”€β”€ images.partai
β”œβ”€β”€ ocr.tar
β”œβ”€β”€ samples
β”‚Β Β  β”œβ”€β”€ test.json
β”‚Β Β  β”œβ”€β”€ train.json
β”‚Β Β  └── val.json
└── tsv.tar
```

Please concat the part files and extract them into respective folder. For example, 
run
```
cd WikiTableExtraction/
cat detection.parta* | tar x
```
to extract the `detection` folder.
Once you extracted all the tar files, the WikiDT dataset has the following file structure.

```sh
+--WikiDT-dataset
|  +--WikiTableExtraction
|  |  +--detection
|  |  |  +--images  # sub page images
|  |  |  +--train  # xml table bbox annotation
|  |  |  +--test  # xml table bbox annotation
|  |  |  +--val  # xml table bbox annotation
|  |  |  images_filelist.txt  # index of 54,032 images
|  |  |  test_filelist.txt  # index of 5,410 test samples 
|  |  |  train_filelist.txt  # index of 43,248 train samples
|  |  |  val_filelist.txt  # index of 5,347 val samples
|  |  +--structure
|  |  |  +--images  # images cropped to table region
|  |  |  +--train  # xml table bbox annotation
|  |  |  +--test  # xml table bbox annotation
|  |  |  +--val  # xml table bbox annotation
|  |  |  images_filelist.txt  # index of 159,898 images
|  |  |  test_filelist.txt  # index of 15,989 test samples
|  |  |  train_filelist.txt  # index of 129,980 train samples
|  |  |  val_filelist.txt  # index of 15,991 val samples
|  +--samples  # in total 70,652 TableVQA samples from the three json files 
|  |  +--train.json  #
|  |  +--test.json  #
|  |  +--val.json  #
|  +--images  # full page image
|  +--ocr  #  text and bbox for the table content
|  |  +--textract # detected by Amazon Textract API
|  |  +--web # extracted from HTML information
|  +--tsv  # extracted table in tsv format
|  |  +--textract # detected by Amazon Textract API
|  |  +--web # extracted from HTML information
```

### Table VQA annotation example

Here is an example of an xml table bbox annotation from `WikiDT-dataset/samples/[train|test|val].json/`.

```
{'all_ocr_files_textract': ['ocr/textract/16301437_page_seg_0.json',
                            'ocr/textract/16301437_page_seg_1.json'],
 'all_ocr_files_web': ['ocr/web/16301437_page_seg_0.json',
                       'ocr/web/16301437_page_seg_1.json'],
 'all_table_files_textract': ['tsv/textract/16301437_page_0.tsv',
                              'tsv/textract/16301437_page_1.tsv'],
 'all_table_files_web': ['tsv/web/16301437_1.tsv', 'tsv/web/16301437_0.tsv'],
 'answer': [['don johnson buckeye st. classic']],
 'image': '16301437_page.png',
 'ocr_retrieval_file_textract': 'ocr/textract/16301437_page_seg_0.json',
 'ocr_retrieval_file_web': 'ocr/web/16301437_page_seg_0.json',
 'question': 'Name the Event which has a Score of 209-197?',
 'sample_id': '14190',
 'sql_str': "SELECT `event` FROM cur_table WHERE  `score` = '209-197'  ",
 'sub_page': ['16301437_page_seg_0.png', '16301437_page_seg_1.png'],
 'sub_page_retrieved': '16301437_page_seg_0.png',
 'subset': 'TFC',
 'table_id': '2-16301437-1',
 'table_retrieval_file_textract': 'tsv/textract/16301437_page_0.tsv',
 'table_retrieval_file_web': 'tsv/web/16301437_1.tsv'}
```


### Table Detection annotation example

Here is an example of an xml table bbox annotation from `WikiDT-dataset/WikiTableExtraction/structure/[train|test|val]/`.

```xml
<annotation>
  <folder />
  <filename>204_147_page_crop_5.png</filename>
  <source>WikiDT Dataset</source>
  <size>
    <width>788</width>
    <height>540.0</height>
    <depth>3</depth>
  </size>
  <object>
    <name>table</name>
    <rowspan />
    <colspan />
    <bndbox>
      <xmin>10</xmin>
      <ymin>10</ymin>
      <xmax>778</xmax>
      <ymax>530</ymax>
    </bndbox>
  </object>
  <object>
    <name>header row</name>
    <rowspan />
    <colspan />
    <bndbox>
      <xmin>10</xmin>
      <ymin>10</ymin>
      <xmax>778</xmax>
      <ymax>33</ymax>
    </bndbox>
  </object> 
  <object>
    <name>header cell</name>
    <rowspan />
    <colspan>10</colspan>
    <bndbox>
      <xmin>12</xmin>
      <ymin>35</ymin>
      <xmax>776</xmax>
      <ymax>58</ymax>
    </bndbox>
  </object>
  <object>
    <name>table row</name>
    <rowspan />
    <colspan />
    <bndbox>
      <xmin>10</xmin>
      <ymin>60</ymin>
      <xmax>778</xmax>
      <ymax>530</ymax>
    </bndbox>
  </object>
</annotation>
```

### Licensing Information

CC BY SA 3.0

### Contributors

[Hui Shi](mailto:hshi@ucsd.edu) (Work done during her internship at Amazon)

[Yusheng Xie](mailto:yushx@amazon.com) (corresponding person)

[Luis Goncalves](mailto:luisgonc@amazon.com)