File size: 7,748 Bytes
b2eb9f0 8364cdb b2eb9f0 8364cdb 2d991ef 8364cdb 6d29284 8364cdb e547fec 8364cdb 22efe7d 8364cdb 22efe7d 2d991ef 8364cdb e547fec 8364cdb e547fec 8364cdb 2d991ef 8364cdb 2d991ef 8364cdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
---
license: cc-by-sa-3.0
task_categories:
- table-question-answering
- question-answering
language:
- en
tags:
- documents
- tables
- VQA
pretty_name: WikiDT
size_categories:
- 100K<n<1M
---
# WikiDT: Wikipedia Table Document dataset for table extraction and visual question answering
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
The WikiDT contains multi-level annotations and labels for the question-answering task based on images. Meanwhile, as the questions are answered from some table on the image, and WikiDT provides the table annotation to facilitate the diagnosis of the models and decompose the problem, WikiDT can be also directly used as a
table recognition dataset.
The dataset contains 16,887 Wikipedia screenshot, which are segmented to 54,032 subpages since the full screenshots are potentially long. In total, there's 159,905 tables in the dataset. The number of question-answer samples is 70,652. Each QA sample contains triplets of <question, answer, full-page screenshot filename>, and is additionally annotated with retrieval labels (which subpage, and which table). 53,698 QA samples also have SQL annotation.
For each subpage, OCR and table extraction annotations from two sources are available. While rendering the screenshots, the ground truth table annotation is recorded. Meanwhile, to make the dataset realistic, we also requested OCR and table extraction from [Amazon Textract](https://aws.amazon.com/textract/) for each subpage (results obtained during Feb.28, 2023 - Mar.6, 2023).
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
Once downloaded, the WikiDT has the following parts. The downloaded files are around 77GB. Please ensure you have at least 160GB since we will be extract individual files from the tars.
```
.
βββ WikiTableExtraction
βΒ Β βββ detection.partaa
βΒ Β βββ detection.partab
βΒ Β βββ detection.partac
βΒ Β βββ detection.partad
βΒ Β βββ detection.partae
βΒ Β βββ detection.partaf
βΒ Β βββ detection.partag
βΒ Β βββ structure.partaa
βΒ Β βββ structure.partab
βΒ Β βββ structure.partac
βΒ Β βββ structure.partad
βΒ Β βββ structure.partae
βββ images.partaa
βββ images.partab
βββ images.partac
βββ images.partad
βββ images.partae
βββ images.partaf
βββ images.partag
βββ images.partah
βββ images.partai
βββ ocr.tar
βββ samples
βΒ Β βββ test.json
βΒ Β βββ train.json
βΒ Β βββ val.json
βββ tsv.tar
```
Please concat the part files and extract them into respective folder. For example,
run
```
cd WikiTableExtraction/
cat detection.parta* | tar x
```
to extract the `detection` folder.
Once you extracted all the tar files, the WikiDT dataset has the following file structure.
```sh
+--WikiDT-dataset
| +--WikiTableExtraction
| | +--detection
| | | +--images # sub page images
| | | +--train # xml table bbox annotation
| | | +--test # xml table bbox annotation
| | | +--val # xml table bbox annotation
| | | images_filelist.txt # index of 54,032 images
| | | test_filelist.txt # index of 5,410 test samples
| | | train_filelist.txt # index of 43,248 train samples
| | | val_filelist.txt # index of 5,347 val samples
| | +--structure
| | | +--images # images cropped to table region
| | | +--train # xml table bbox annotation
| | | +--test # xml table bbox annotation
| | | +--val # xml table bbox annotation
| | | images_filelist.txt # index of 159,898 images
| | | test_filelist.txt # index of 15,989 test samples
| | | train_filelist.txt # index of 129,980 train samples
| | | val_filelist.txt # index of 15,991 val samples
| +--samples # in total 70,652 TableVQA samples from the three json files
| | +--train.json #
| | +--test.json #
| | +--val.json #
| +--images # full page image
| +--ocr # text and bbox for the table content
| | +--textract # detected by Amazon Textract API
| | +--web # extracted from HTML information
| +--tsv # extracted table in tsv format
| | +--textract # detected by Amazon Textract API
| | +--web # extracted from HTML information
```
### Table VQA annotation example
Here is an example of an xml table bbox annotation from `WikiDT-dataset/samples/[train|test|val].json/`.
```
{'all_ocr_files_textract': ['ocr/textract/16301437_page_seg_0.json',
'ocr/textract/16301437_page_seg_1.json'],
'all_ocr_files_web': ['ocr/web/16301437_page_seg_0.json',
'ocr/web/16301437_page_seg_1.json'],
'all_table_files_textract': ['tsv/textract/16301437_page_0.tsv',
'tsv/textract/16301437_page_1.tsv'],
'all_table_files_web': ['tsv/web/16301437_1.tsv', 'tsv/web/16301437_0.tsv'],
'answer': [['don johnson buckeye st. classic']],
'image': '16301437_page.png',
'ocr_retrieval_file_textract': 'ocr/textract/16301437_page_seg_0.json',
'ocr_retrieval_file_web': 'ocr/web/16301437_page_seg_0.json',
'question': 'Name the Event which has a Score of 209-197?',
'sample_id': '14190',
'sql_str': "SELECT `event` FROM cur_table WHERE `score` = '209-197' ",
'sub_page': ['16301437_page_seg_0.png', '16301437_page_seg_1.png'],
'sub_page_retrieved': '16301437_page_seg_0.png',
'subset': 'TFC',
'table_id': '2-16301437-1',
'table_retrieval_file_textract': 'tsv/textract/16301437_page_0.tsv',
'table_retrieval_file_web': 'tsv/web/16301437_1.tsv'}
```
### Table Detection annotation example
Here is an example of an xml table bbox annotation from `WikiDT-dataset/WikiTableExtraction/structure/[train|test|val]/`.
```xml
<annotation>
<folder />
<filename>204_147_page_crop_5.png</filename>
<source>WikiDT Dataset</source>
<size>
<width>788</width>
<height>540.0</height>
<depth>3</depth>
</size>
<object>
<name>table</name>
<rowspan />
<colspan />
<bndbox>
<xmin>10</xmin>
<ymin>10</ymin>
<xmax>778</xmax>
<ymax>530</ymax>
</bndbox>
</object>
<object>
<name>header row</name>
<rowspan />
<colspan />
<bndbox>
<xmin>10</xmin>
<ymin>10</ymin>
<xmax>778</xmax>
<ymax>33</ymax>
</bndbox>
</object>
<object>
<name>header cell</name>
<rowspan />
<colspan>10</colspan>
<bndbox>
<xmin>12</xmin>
<ymin>35</ymin>
<xmax>776</xmax>
<ymax>58</ymax>
</bndbox>
</object>
<object>
<name>table row</name>
<rowspan />
<colspan />
<bndbox>
<xmin>10</xmin>
<ymin>60</ymin>
<xmax>778</xmax>
<ymax>530</ymax>
</bndbox>
</object>
</annotation>
```
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed] |