File size: 10,159 Bytes
b69793e 1bf0be3 15b7f37 5085d30 15b7f37 5085d30 15b7f37 5085d30 b69793e 718b0e1 1bf0be3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
---
license: cc-by-4.0
dataset_info:
- config_name: multieurlex-doc-en
features:
- name: filename
dtype: string
- name: words
sequence:
sequence: string
- name: boxes
sequence:
sequence:
sequence: int64
splits:
- name: train
num_bytes: 1208998381
num_examples: 54808
- name: test
num_bytes: 110325080
num_examples: 4988
- name: validation
num_bytes: 106866095
num_examples: 4997
download_size: 223853363
dataset_size: 1426189556
- config_name: wiki-doc-ar-img
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': Earthquake
'1': SolarEclipse
'2': MusicFestival
'3': MilitaryConflict
'4': FilmFestival
'5': Convention
'6': FootballMatch
'7': OlympicEvent
'8': GrandPrix
'9': GolfTournament
'10': WomensTennisAssociationTournament
'11': TennisTournament
'12': SoccerTournament
'13': WrestlingEvent
'14': HorseRace
'15': CyclingRace
'16': MixedMartialArtsEvent
'17': Election
'18': SoccerClubSeason
'19': NationalFootballLeagueSeason
'20': NCAATeamSeason
'21': BaseballSeason
'22': VideoGame
'23': BiologicalDatabase
'24': EurovisionSongContestEntry
'25': Album
'26': Musical
'27': ClassicalMusicComposition
'28': ArtistDiscography
'29': Single
'30': Poem
'31': Magazine
'32': Newspaper
'33': AcademicJournal
'34': Play
'35': Manga
'36': ComicStrip
'37': Anime
'38': HollywoodCartoon
'39': MusicGenre
'40': Grape
'41': Conifer
'42': Fern
'43': Moss
'44': GreenAlga
'45': CultivatedVariety
'46': Cycad
'47': Arachnid
'48': Fish
'49': Insect
'50': Reptile
'51': Mollusca
'52': Bird
'53': Amphibian
'54': RaceHorse
'55': Crustacean
'56': Fungus
'57': Lighthouse
'58': Theatre
'59': RollerCoaster
'60': Airport
'61': RailwayStation
'62': Road
'63': RailwayLine
'64': Bridge
'65': RoadTunnel
'66': Dam
'67': CricketGround
'68': Stadium
'69': Racecourse
'70': GolfCourse
'71': Prison
'72': Hospital
'73': Museum
'74': Hotel
'75': Library
'76': Restaurant
'77': ShoppingMall
'78': HistoricBuilding
'79': Castle
'80': Volcano
'81': MountainPass
'82': Glacier
'83': Canal
'84': River
'85': Lake
'86': Mountain
'87': Cave
'88': MountainRange
'89': Galaxy
'90': ArtificialSatellite
'91': Planet
'92': Town
'93': Village
'94': Diocese
'95': AutomobileEngine
'96': SupremeCourtOfTheUnitedStatesCase
'97': MilitaryPerson
'98': Religious
'99': Engineer
'100': BusinessPerson
'101': SportsTeamMember
'102': SoccerManager
'103': Chef
'104': Philosopher
'105': CollegeCoach
'106': ScreenWriter
'107': Historian
'108': Poet
'109': President
'110': PrimeMinister
'111': Congressman
'112': Senator
'113': Mayor
'114': MemberOfParliament
'115': Governor
'116': Monarch
'117': PlayboyPlaymate
'118': Cardinal
'119': Saint
'120': Pope
'121': ChristianBishop
'122': BeautyQueen
'123': RadioHost
'124': HandballPlayer
'125': Cricketer
'126': Jockey
'127': SumoWrestler
'128': AmericanFootballPlayer
'129': LacrossePlayer
'130': TennisPlayer
'131': AmateurBoxer
'132': SoccerPlayer
'133': Rower
'134': TableTennisPlayer
'135': BeachVolleyballPlayer
'136': SpeedwayRider
'137': FormulaOneRacer
'138': NascarDriver
'139': Swimmer
'140': IceHockeyPlayer
'141': FigureSkater
'142': Skater
'143': Curler
'144': Skier
'145': GolfPlayer
'146': SquashPlayer
'147': PokerPlayer
'148': BadmintonPlayer
'149': ChessPlayer
'150': RugbyPlayer
'151': DartsPlayer
'152': NetballPlayer
'153': MartialArtist
'154': Gymnast
'155': Canoeist
'156': GaelicGamesPlayer
'157': HorseRider
'158': BaseballPlayer
'159': Cyclist
'160': Bodybuilder
'161': AustralianRulesFootballPlayer
'162': BasketballPlayer
'163': Ambassador
'164': Baronet
'165': Model
'166': Architect
'167': Judge
'168': Economist
'169': Journalist
'170': Painter
'171': Comedian
'172': ComicsCreator
'173': ClassicalMusicArtist
'174': FashionDesigner
'175': AdultActor
'176': VoiceActor
'177': Photographer
'178': HorseTrainer
'179': Entomologist
'180': Medician
'181': SoapCharacter
'182': AnimangaCharacter
'183': MythologicalFigure
'184': Noble
'185': Astronaut
'186': OfficeHolder
'187': PublicTransitSystem
'188': BusCompany
'189': LawFirm
'190': Winery
'191': RecordLabel
'192': Brewery
'193': Airline
'194': Publisher
'195': Bank
'196': PoliticalParty
'197': Legislature
'198': Band
'199': BasketballLeague
'200': SoccerLeague
'201': IceHockeyLeague
'202': BaseballLeague
'203': RugbyLeague
'204': MilitaryUnit
'205': University
'206': School
'207': CyclingTeam
'208': CanadianFootballTeam
'209': BasketballTeam
'210': AustralianFootballTeam
'211': HockeyTeam
'212': HandballTeam
'213': CricketTeam
'214': RugbyClub
'215': TradeUnion
'216': RadioStation
'217': BroadcastNetwork
'218': TelevisionStation
splits:
- name: train
num_bytes: 7919491304.875
num_examples: 8129
- name: test
num_bytes: 1691686089.125
num_examples: 1743
- name: validation
num_bytes: 1701166069.25
num_examples: 1742
download_size: 11184835705
dataset_size: 11312343463.25
configs:
- config_name: multieurlex-doc-en
data_files:
- split: train
path: multieurlex-doc-en/train-*
- split: test
path: multieurlex-doc-en/test-*
- split: validation
path: multieurlex-doc-en/validation-*
- config_name: wiki-doc-ar-img
data_files:
- split: train
path: wiki-doc-ar-img/train-*
- split: test
path: wiki-doc-ar-img/test-*
- split: validation
path: wiki-doc-ar-img/validation-*
---
## Additional Information
### Licensing Information
We provide MultiEURLEX with the same licensing as the original EU data (CC-BY-4.0):
© European Union, 1998-2021
The Commission’s document reuse policy is based on Decision 2011/833/EU. Unless otherwise specified, you can re-use the legal documents published in EUR-Lex for commercial or non-commercial purposes.
The copyright for the editorial content of this website, the summaries of EU legislation and the consolidated texts, which is owned by the EU, is licensed under the Creative Commons Attribution 4.0 International licence. This means that you can re-use the content provided you acknowledge the source and indicate any changes you have made.
Source: https://eur-lex.europa.eu/content/legal-notice/legal-notice.html \
Read more: https://eur-lex.europa.eu/content/help/faq/reuse-contents-eurlex.html
### Citation Information
```
@inproceedings{fujinuma-etal-2023-multi,
title = "A Multi-Modal Multilingual Benchmark for Document Image Classification",
author = "Fujinuma, Yoshinari and
Varia, Siddharth and
Sankaran, Nishant and
Appalaraju, Srikar and
Min, Bonan and
Vyas, Yogarshi",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.958",
doi = "10.18653/v1/2023.findings-emnlp.958",
pages = "14361--14376",
abstract = "Document image classification is different from plain-text document classification and consists of classifying a document by understanding the content and structure of documents such as forms, emails, and other such documents. We show that the only existing dataset for this task (Lewis et al., 2006) has several limitations and we introduce two newly curated multilingual datasets WIKI-DOC and MULTIEURLEX-DOC that overcome these limitations. We further undertake a comprehensive study of popular visually-rich document understanding or Document AI models in previously untested setting in document image classification such as 1) multi-label classification, and 2) zero-shot cross-lingual transfer setup. Experimental results show limitations of multilingual Document AI models on cross-lingual transfer across typologically distant languages. Our datasets and findings open the door for future research into improving Document AI models.",
}
``` |