File size: 7,186 Bytes
9525518 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import torch
import torchaudio
import time
import os
import numpy as np
import json
from datasets import load_dataset, Audio
from snac import SNAC
from torch.nn import functional as F
from tqdm import tqdm
import wandb
# Constants
SNAC_SAMPLE_RATE = 24000
OUTPUT_DIR = "processed_common_voice"
BATCH_SIZE = 1000
# Ensure CUDA is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_snac_model(sample_rate):
if sample_rate == 24000:
model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(device)
else:
raise ValueError("Unsupported sample rate. Please use 24000.")
return model
snac_model = load_snac_model(SNAC_SAMPLE_RATE)
def chunk_and_pad_audio(audio, chunk_size):
length = audio.shape[-1]
padded_length = ((length + chunk_size - 1) // chunk_size) * chunk_size
padded_audio = F.pad(audio, (0, padded_length - length), mode="constant", value=0)
batched_audio = padded_audio.unfold(-1, size=chunk_size, step=chunk_size)
return batched_audio
def generate_snac_encoding(audio):
waveform = torch.tensor(audio["array"]).float().to(device)
if audio["sampling_rate"] != SNAC_SAMPLE_RATE:
resampler = torchaudio.transforms.Resample(
orig_freq=audio["sampling_rate"], new_freq=SNAC_SAMPLE_RATE
)
waveform = resampler(waveform)
if waveform.dim() == 2:
waveform = waveform.mean(dim=0, keepdim=True)
elif waveform.dim() == 1:
waveform = waveform.unsqueeze(0)
num_second = 1
chunk_size_initial = num_second * SNAC_SAMPLE_RATE
lcm = np.lcm.reduce([snac_model.vq_strides[0], snac_model.attn_window_size or 1])
pad_to = snac_model.hop_length * lcm
chunk_size = int(np.ceil(chunk_size_initial / pad_to) * pad_to)
audio = chunk_and_pad_audio(waveform, chunk_size)
audio = audio.permute(1, 0, 2)
codes_list = []
with torch.no_grad():
for chunk in audio:
codes = snac_model.encode(chunk.unsqueeze(0))
codes = [c.cpu() for c in codes]
codes_list.append(codes)
codes_list = [torch.cat(codes_list, dim=0) for codes_list in zip(*codes_list)]
codes_list = [code.reshape(-1).cpu().tolist() for code in codes_list]
string_codes = " ".join(map(str, codes_list[0]))
return string_codes
def process_audio(item):
start_time = time.time()
try:
snac_tokens = generate_snac_encoding(item["audio"])
if not snac_tokens:
raise ValueError("Generated SNAC tokens are empty")
except Exception as e:
return None
processing_time = time.time() - start_time
return {
"path": item["path"],
"sentence": item["sentence"],
"age": item["age"],
"gender": item["gender"],
"accent": item["accent"],
"locale": item["locale"],
"snac": snac_tokens,
"processing_time": processing_time,
"audio_duration": len(item["audio"]["array"]) / item["audio"]["sampling_rate"],
}
def save_to_jsonl(data, file_path):
# Open the file in append mode to add new data to the existing language-specific JSONL file
with open(file_path, "a") as f:
for item in data:
json.dump(item, f)
f.write("\n")
def process_language(language):
# Ensure output directory exists
language_dir = os.path.join(OUTPUT_DIR, language)
os.makedirs(language_dir, exist_ok=True)
jsonl_path = os.path.join(language_dir, f"{language}_processed.jsonl")
# Read existing data
existing_data = set()
if os.path.exists(jsonl_path):
with open(jsonl_path, "r") as f:
existing_data = set(f.readlines())
# Load the Common Voice dataset for this language
dataset = load_dataset(
"mozilla-foundation/common_voice_16_1", language, split="train", streaming=True
)
# Cast the dataset to include audio
dataset = dataset.cast_column("audio", Audio(sampling_rate=SNAC_SAMPLE_RATE))
processed_data = []
total_processed = 0
report_counter = 0
for item in tqdm(dataset, desc=f"Processing {language}"):
result = process_audio(item)
if result:
json_line = json.dumps(result) + "\n"
if json_line not in existing_data:
processed_data.append(result)
existing_data.add(json_line)
total_processed += 1
report_counter += 1
if report_counter % 1000 == 0: # Report to wandb every 1000 rows
wandb.log(
{
"language": language,
"average_processing_time": np.mean(
[item["processing_time"] for item in processed_data]
),
"average_audio_duration": np.mean(
[item["audio_duration"] for item in processed_data]
),
"average_snac_token_count": np.mean(
[len(item["snac"].split()) for item in processed_data]
),
}
)
report_counter = 0 # Reset the counter
# Save every BATCH_SIZE items
if len(processed_data) >= BATCH_SIZE:
save_to_jsonl(processed_data, jsonl_path)
processed_data = [] # Clear the list after saving
# Save any remaining processed data
if processed_data:
save_to_jsonl(processed_data, jsonl_path)
return total_processed
def main():
# Initialize wandb
wandb.init(project="common-voice-processing", job_type="data-processing")
# List of languages to process, starting with English
languages = ['ckb', 'cnh', 'cs', 'cv', 'cy', 'da', 'de']
# languages = ['dv', 'dyu', 'el', 'en', 'eo', 'es', 'et']
# languages = ['eu', 'fa', 'fi', 'fr', 'fy-NL', 'ga-IE', 'gl']
# languages = ['gn', 'ha', 'he', 'hi', 'hsb', 'hu', 'hy-AM']
# languages = ['ia', 'id', 'ig', 'is', 'it', 'ja', 'ka']
# languages = ['kab', 'kk', 'kmr', 'ko', 'ky', 'lg', 'lij']
# languages = ['lo', 'lt', 'ltg', 'lv', 'mdf', 'mhr', 'mk']
# languages = ['ml', 'mn', 'mr', 'mrj', 'mt', 'myv', 'nan-tw']
# languages = ['ne-NP', 'nhi', 'nl', 'nn-NO', 'oc', 'or', 'os']
# languages = ['pa-IN', 'pl', 'ps', 'pt', 'quy', 'rm-sursilv', 'rm-vallader']
# languages = ['ro', 'ru', 'rw', 'sah', 'sat', 'sc', 'sk']
# languages = ['skr', 'sl', 'sq', 'sr', 'sv-SE', 'sw', 'ta']
# languages = ['te', 'th', 'ti', 'tig', 'tk', 'tok', 'tr']
# languages = ['tt', 'tw', 'ug', 'uk', 'ur', 'uz', 'vi', 'vot', 'yi', 'yo', 'yue', 'zgh', 'zh-CN', 'zh-HK', 'zh-TW']
total_processed_all_languages = 0
# Process each language
for language in languages:
total_processed = process_language(language)
total_processed_all_languages += total_processed
print(
f"\nCompleted processing all languages. Total files processed across all languages: {total_processed_all_languages}"
)
wandb.finish()
if __name__ == "__main__":
main()
|