File size: 8,747 Bytes
a13242c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import torch
import torch.nn.functional as F
import numpy as np
import json
import os
import multiprocessing as mp
from datasets import load_dataset
from snac import SNAC
from tqdm import tqdm
from collections import defaultdict
import logging
import traceback
import time
import queue
import torchaudio
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Constants
SNAC_SAMPLE_RATE = 24000
OUTPUT_DIR = "processed_emilia"
ROWS_PER_SAVE = 1000
ROWS_PER_PUSH = 10000000
NUM_WORKERS = 64
BATCH_SIZE = 1000
STOP_AFTER = None
NUM_GPUS = torch.cuda.device_count()
# Worker stages
STAGES = [
"Initializing CUDA (Starting)",
"Initializing CUDA (Finished)",
"Loading SNAC model (Starting)",
"Loading SNAC model (Finished)",
"Loading dataset (Starting)",
"Loading dataset (Finished)",
"Resolving data files (Starting)",
"Resolving data files (Finished)",
"Preparing batch (Starting)",
"Preparing batch (Finished)",
"Encoding audio (Starting)",
"Encoding audio (Finished)",
"Post-processing (Starting)",
"Post-processing (Finished)",
"Saving results (Starting)",
"Saving results (Finished)",
"Completed",
"Error"
]
def chunk_and_pad_audio(audio, chunk_size):
length = audio.shape[-1]
padded_length = ((length + chunk_size - 1) // chunk_size) * chunk_size
padded_audio = F.pad(audio, (0, padded_length - length), mode="constant", value=0)
batched_audio = padded_audio.unfold(-1, size=chunk_size, step=chunk_size)
return batched_audio
def generate_snac_encoding(audio, model):
device = next(model.parameters()).device
waveform = torch.tensor(audio["array"]).float().to(device)
if audio["sampling_rate"] != SNAC_SAMPLE_RATE:
resampler = torchaudio.transforms.Resample(
orig_freq=audio["sampling_rate"], new_freq=SNAC_SAMPLE_RATE
).to(device)
waveform = resampler(waveform)
if waveform.dim() == 2:
waveform = waveform.mean(dim=0, keepdim=True)
elif waveform.dim() == 1:
waveform = waveform.unsqueeze(0)
num_second = 1
chunk_size_initial = num_second * SNAC_SAMPLE_RATE
lcm = np.lcm.reduce([model.vq_strides[0], model.attn_window_size or 1])
pad_to = model.hop_length * lcm
chunk_size = int(np.ceil(chunk_size_initial / pad_to) * pad_to)
audio = chunk_and_pad_audio(waveform, chunk_size)
audio = audio.permute(1, 0, 2)
codes_list = []
with torch.no_grad():
for chunk in audio:
codes = model.encode(chunk.unsqueeze(0))
codes = [c.cpu() for c in codes]
codes_list.append(codes)
codes_list = [torch.cat(codes_list, dim=0) for codes_list in zip(*codes_list)]
codes_list = [code.reshape(-1).cpu().tolist() for code in codes_list]
# Create a dictionary with keys "snac_0", "snac_1", etc.
snac_dict = {f"snac_{i}": codes for i, codes in enumerate(codes_list)}
return snac_dict
def process_audio_batch(batch, model):
results = []
for item in batch:
try:
snac_tokens = generate_snac_encoding(item['mp3'], model)
if not snac_tokens:
raise ValueError("Generated SNAC tokens are empty")
results.append({
"__key__": item["__key__"],
"__url__": item["__url__"],
"json": item['json'],
"path": item['mp3']["path"],
**snac_tokens # Add the snac tokens dictionary
})
except Exception as e:
logging.error(f"Error during post-processing: {str(e)}")
return results
def save_to_jsonl(data, file_path):
with open(file_path, "a") as f:
for item in data:
json.dump(item, f)
f.write("\n")
def process_shard(worker_id, status_queue, progress_queue):
try:
status_queue.put((worker_id, "Initializing CUDA (Starting)"))
gpu_id = worker_id % NUM_GPUS
device = torch.device(f"cuda:{gpu_id}")
status_queue.put((worker_id, "Initializing CUDA (Finished)"))
status_queue.put((worker_id, "Loading SNAC model (Starting)"))
model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(device)
status_queue.put((worker_id, "Loading SNAC model (Finished)"))
status_queue.put((worker_id, "Loading dataset (Starting)"))
dataset = load_dataset("amphion/Emilia-Dataset", streaming=True)
status_queue.put((worker_id, "Loading dataset (Finished)"))
status_queue.put((worker_id, "Resolving data files (Starting)"))
shard_iter = (
item for i, item in enumerate(dataset["train"]) if i % NUM_WORKERS == worker_id
)
first_item = next(shard_iter)
status_queue.put((worker_id, "Resolving data files (Finished)"))
worker_output_dir = os.path.join(OUTPUT_DIR, f"worker_{worker_id}")
os.makedirs(worker_output_dir, exist_ok=True)
output_file = os.path.join(
worker_output_dir, f"processed_worker_{worker_id}.jsonl"
)
batch = [first_item]
total_processed = 0
while True:
try:
item = next(shard_iter)
batch.append(item)
if len(batch) == BATCH_SIZE:
status_queue.put((worker_id, "Preparing batch (Starting)"))
results = process_audio_batch(batch, model)
status_queue.put((worker_id, "Preparing batch (Finished)"))
status_queue.put((worker_id, "Saving results (Starting)"))
save_to_jsonl(results, output_file)
status_queue.put((worker_id, "Saving results (Finished)"))
total_processed += len(results)
progress_queue.put(len(results))
batch = []
if total_processed >= ROWS_PER_PUSH:
break # Stop after reaching ROWS_PER_PUSH
if STOP_AFTER is not None and total_processed // BATCH_SIZE >= STOP_AFTER:
break
except StopIteration:
break
# Process any remaining items
if batch:
results = process_audio_batch(batch, model)
save_to_jsonl(results, output_file)
total_processed += len(results)
progress_queue.put(len(results))
status_queue.put((worker_id, "Completed"))
except Exception as e:
logging.error(
f"Worker {worker_id} encountered an error: {str(e)}\n{traceback.format_exc()}"
)
status_queue.put((worker_id, "Error"))
def main():
os.makedirs(OUTPUT_DIR, exist_ok=True)
ctx = mp.get_context('spawn')
status_queue = ctx.Queue()
progress_queue = ctx.Queue()
print(f"Initializing {NUM_WORKERS} workers across {NUM_GPUS} GPUs...")
# Create and start worker processes
processes = [
ctx.Process(target=process_shard, args=(i, status_queue, progress_queue))
for i in range(NUM_WORKERS)
]
for p in processes:
p.start()
stage_counts = {
stage: tqdm(total=NUM_WORKERS, desc=f"{stage:<30}", position=i, leave=True)
for i, stage in enumerate(STAGES)
}
total_rows = NUM_WORKERS * BATCH_SIZE * STOP_AFTER if STOP_AFTER else ROWS_PER_PUSH
overall_progress = tqdm(
total=total_rows, desc="Overall Progress", position=len(STAGES), leave=True
)
worker_stages = defaultdict(lambda: "Initializing CUDA (Starting)")
while any(p.is_alive() for p in processes):
try:
worker_id, status = status_queue.get(timeout=0.1)
old_stage = worker_stages[worker_id]
worker_stages[worker_id] = status
if old_stage != status:
if old_stage != "Completed" and old_stage != "Error":
stage_counts[old_stage].update(-1)
stage_counts[status].update(1)
except queue.Empty:
pass
try:
progress = progress_queue.get(timeout=0.1)
overall_progress.update(progress)
except queue.Empty:
pass
for p in processes:
p.join()
for bar in stage_counts.values():
bar.close()
overall_progress.close()
print("All workers finished processing.")
# Print final statistics
completed_workers = sum(1 for stage in worker_stages.values() if stage == "Completed")
error_workers = sum(1 for stage in worker_stages.values() if stage == "Error")
print(f"Completed workers: {completed_workers}")
print(f"Workers with errors: {error_workers}")
if __name__ == "__main__":
main()
|