File size: 3,988 Bytes
c71fb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import numpy as np
import librosa
import soundfile as sf
from pydub import AudioSegment
from pydub.silence import split_on_silence
from pydub.playback import play
from tqdm import tqdm

def clean_audio(audio_path, output_path, selected_chunks, min_silence_len=1000, silence_thresh=-40, keep_silence=100):
    # Load the audio file
    audio_segment = AudioSegment.from_file(audio_path)

    # Convert to mono
    audio_segment = audio_segment.set_channels(1)

    # Normalize the audio
    audio_segment = normalize_audio(audio_segment)

    # Split on silence
    chunks = split_on_silence(
        audio_segment,
        min_silence_len=min_silence_len,
        silence_thresh=silence_thresh,
        keep_silence=keep_silence,
    )

    # Find the main speaker based on total duration
    main_speaker_chunk = max(chunks, key=lambda chunk: len(chunk))

    # Apply EQ and compression
    main_speaker_chunk = apply_eq_and_compression(main_speaker_chunk)

    # Export the main speaker's audio
    main_speaker_chunk.export(output_path, format="wav")

def normalize_audio(audio_segment):
    """
    Normalizes the audio to a target volume.
    """
    target_dBFS = -20
    change_in_dBFS = target_dBFS - audio_segment.dBFS
    return audio_segment.apply_gain(change_in_dBFS)

def apply_eq_and_compression(audio_segment):
    """
    Applies equalization and compression to the audio.
    """
    # Apply EQ
    audio_segment = audio_segment.high_pass_filter(80)
    audio_segment = audio_segment.low_pass_filter(12000)

    # Apply compression
    threshold = -20
    ratio = 2
    attack = 10
    release = 100
    audio_segment = audio_segment.compress_dynamic_range(
        threshold=threshold,
        ratio=ratio,
        attack=attack,
        release=release,
    )

    return audio_segment

def process_file(wav_file, srt_file, cleaned_folder):
    print(f"Processing file: {wav_file}")

    # Create the cleaned folder if it doesn't exist
    os.makedirs(cleaned_folder, exist_ok=True)

    input_wav_path = wav_file
    output_wav_path = os.path.join(cleaned_folder, os.path.basename(wav_file))

    # Review and select desired SRT chunks
    selected_chunks = review_srt_chunks(input_wav_path, srt_file)

    # Clean the audio based on selected chunks
    clean_audio(input_wav_path, output_wav_path, selected_chunks)

    print(f"Cleaned audio saved to: {output_wav_path}")

def review_srt_chunks(audio_path, srt_path):
    audio_segment = AudioSegment.from_wav(audio_path)
    selected_chunks = []

    with open(srt_path, "r") as srt_file:
        srt_content = srt_file.read()
        srt_entries = srt_content.strip().split("\n\n")

        for entry in tqdm(srt_entries, desc="Reviewing SRT chunks", unit="chunk"):
            lines = entry.strip().split("\n")
            if len(lines) >= 3:
                start_time, end_time = lines[1].split(" --> ")
                start_time = convert_to_milliseconds(start_time)
                end_time = convert_to_milliseconds(end_time)

                chunk = audio_segment[start_time:end_time]
                print("Playing chunk...")
                play(chunk)

                choice = input("Keep this chunk? (y/n): ")
                if choice.lower() == "y":
                    selected_chunks.append((start_time, end_time))
                    print("Chunk selected.")
                else:
                    print("Chunk skipped.")

    return selected_chunks

def convert_to_milliseconds(time_str):
    time_str = time_str.replace(",", ".")
    hours, minutes, seconds = time_str.strip().split(":")
    milliseconds = (int(hours) * 3600 + int(minutes) * 60 + float(seconds)) * 1000
    return int(milliseconds)

# Set the WAV file, SRT file, and cleaned folder paths
wav_file = "/path/to/your/audio.wav"
srt_file = "/path/to/your/subtitles.srt"
cleaned_folder = "/path/to/cleaned/folder"

# Process the WAV file
process_file(wav_file, srt_file, cleaned_folder)

print("Processing completed.")