File size: 5,565 Bytes
9f3c65a
 
 
 
 
 
ae72c9e
 
 
 
 
bcc1b51
 
ae72c9e
 
 
 
 
 
 
 
0f47dab
 
 
 
 
ae72c9e
 
 
9f3c65a
 
 
ae72c9e
 
 
2aa3c68
ae72c9e
 
 
 
 
 
bcc1b51
ae72c9e
 
 
a43f524
ae72c9e
 
 
9f3c65a
bcc1b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f3c65a
 
bcc1b51
 
 
 
ae72c9e
 
 
 
 
0f47dab
2aa3c68
 
0f47dab
ae72c9e
 
0f47dab
ae72c9e
 
 
 
2aa3c68
ae72c9e
bcc1b51
0f47dab
bcc1b51
0f47dab
bcc1b51
 
0f47dab
 
 
 
 
 
 
a43f524
0f47dab
9f3c65a
2aa3c68
0f47dab
 
2aa3c68
0f47dab
2aa3c68
0f47dab
ae72c9e
2aa3c68
ae72c9e
 
0f47dab
2aa3c68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from datasets import (
    GeneratorBasedBuilder,
    SplitGenerator,
    DownloadManager,
    BuilderConfig,
)
import json
import os

import datasets

from typing import List


_HOMEPAGE = "http://github.com/iamgroot42/mimir"

_DESCRIPTION = """\
Member and non-member splits for our MI experiments using MIMIR. Data is available for each source.
"""

_CITATION = """\
@article{duan2024membership,
      title={Do Membership Inference Attacks Work on Large Language Models?}, 
      author={Michael Duan and Anshuman Suri and Niloofar Mireshghallah and Sewon Min and Weijia Shi and Luke Zettlemoyer and Yulia Tsvetkov and Yejin Choi and David Evans and Hannaneh Hajishirzi},
      year={2024},
      journal={arXiv:2402.07841},
}
"""

_DOWNLOAD_URL = "https://huggingface.co/datasets/iamgroot42/mimir/resolve/main/"


class MimirConfig(BuilderConfig):
    """BuilderConfig for Mimir dataset."""

    def __init__(self, *args, subsets: List[str] = [], **kwargs):
        """Constructs a MimirConfig.

        Args:
            **kwargs: keyword arguments forwarded to super.
        """
        super(MimirConfig, self).__init__(**kwargs)
        self.subsets = subsets


class MimirDataset(GeneratorBasedBuilder):
    VERSION = datasets.Version("1.3.0")

    BUILDER_CONFIG_CLASS = MimirConfig
    BUILDER_CONFIGS = [
        MimirConfig(
            name="arxiv",
            subsets=["ngram_7_0.2", "ngram_13_0.2", "ngram_13_0.8"],
            description="This split contains data from the Pile's Arxiv subset at various n-gram overlap thresholds"
        ),
        MimirConfig(
            name="dm_mathematics",
            subsets=["ngram_7_0.2", "ngram_13_0.2", "ngram_13_0.8"],
            description="This split contains data from the Pile's DM Mathematics subset at various n-gram overlap thresholds"
        ),
        MimirConfig(
            name="github",
            subsets=["ngram_7_0.2", "ngram_13_0.2", "ngram_13_0.8"],
            description="This split contains data from the Pile's GitHub subset at various n-gram overlap thresholds"
        ),
        MimirConfig(
            name="hackernews", 
            subsets=["ngram_7_0.2", "ngram_13_0.2", "ngram_13_0.8"],
            description="This split contains data from the Pile's HackerNews subset at various n-gram overlap thresholds"
        ),
        MimirConfig(
            name="pile_cc", 
            subsets=["ngram_7_0.2", "ngram_13_0.2", "ngram_13_0.8"],
            description="This split contains data from the Pile's Pile CC subset at various n-gram overlap thresholds"
        ),
        MimirConfig(
            name="pubmed_central", 
            subsets=["ngram_7_0.2", "ngram_13_0.2", "ngram_13_0.8"],
            description="This split contains data from the Pile's PubMed Central subset at various n-gram overlap thresholds"
        ),
        MimirConfig(
            name="wikipedia_(en)",
            subsets=["ngram_7_0.2", "ngram_13_0.2", "ngram_13_0.8"],
            description="This split contains data from the Pile's Wikipedia subset at various n-gram overlap thresholds"
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({
                "input": datasets.Value("string"),
                "label": datasets.Value("int32"),
            }),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: DownloadManager):
        """Returns SplitGenerators."""
        parent_dir = "cache_100_200_1000_512"

        if len(self.config.subsets) > 0:
            suffixes = [f"{subset}" for subset in self.config.subsets]
        else:
            suffixes = ["none"]

        file_paths = {}
        for subset_split_suffix in suffixes:
            internal_fp = {}

            subset_split_suffix_use = f"_{subset_split_suffix}" if subset_split_suffix != "none" else ""

            internal_fp['member'] = os.path.join(parent_dir, "train", f"{self.config.name}{subset_split_suffix_use}.jsonl")
            internal_fp['nonmember'] = os.path.join(parent_dir, "test", f"{self.config.name}{subset_split_suffix_use}.jsonl")

            file_paths[subset_split_suffix] = internal_fp

        # Download data
        data_dir = {}
        for k, v_dict in file_paths.items():
            download_paths = [_DOWNLOAD_URL + v for v in v_dict.values()]
            paths = dl_manager.download_and_extract(download_paths)
            internal_dict = {k: v for k, v in zip(v_dict.keys(), paths)}
            data_dir[k] = internal_dict

        splits = [SplitGenerator(name=k, gen_kwargs={"file_path_dict": data_dir[k]}) for k in suffixes]
        return splits

    def _generate_examples(self, file_path_dict):
        """Yields individual examples for members and non-members."""
        with open(file_path_dict["member"], "r") as f_member, open(file_path_dict["nonmember"], "r") as f_nonmember:
            for id, (member, nonmember) in enumerate(zip(f_member, f_nonmember)):
                member_text = json.loads(member)
                nonmember_text = json.loads(nonmember)

                # Yield separate examples for members and non-members
                yield f"{id}_member", {
                    "input": member_text,
                    "label": 1,  # Member example
                }
                yield f"{id}_nonmember", {
                    "input": nonmember_text,
                    "label": 0,  # Non-member example
                }