Datasets:
File size: 3,142 Bytes
4afe2b4 ed15ebb 4afe2b4 ed15ebb 4afe2b4 ed15ebb 4afe2b4 ed15ebb 4afe2b4 ed15ebb 4afe2b4 ed15ebb 4afe2b4 1f97ac4 4afe2b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
task_categories:
- visual-question-answering
language:
- en
tags:
- Vision
- food
- recipe
configs:
- config_name: Recipe1M
data_files:
- split: test
path: food_eval_multitask_v2/data-*.arrow
- config_name: Nutrition5K
data_files:
- split: test
path: nutrition50k/data-*.arrow
- config_name: Food101
data_files:
- split: test
path: food101/data-*.arrow
- config_name: FoodSeg103
data_files:
- split: test
path: foodseg103/data-*.arrow
---
# Adapting Multimodal Large Language Models to Domains via Post-Training
This repos contains the **food visual instruction tasks for evaluating MLLMs** in our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930).
The main project page is: [Adapt-MLLM-to-Domains](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains/edit/main/README.md)
We investigate domain adaptation of MLLMs through post-training, focusing on data synthesis, training pipelines, and task evaluation.
**(1) Data Synthesis**: Using open-source models, we develop a visual instruction synthesizer that effectively generates diverse visual instruction tasks from domain-specific image-caption pairs. **Our synthetic tasks surpass those generated by manual rules, GPT-4, and GPT-4V in enhancing the domain-specific performance of MLLMs.**
**(2) Training Pipeline**: While the two-stage training--initially on image-caption pairs followed by visual instruction tasks--is commonly adopted for developing general MLLMs, we apply a single-stage training pipeline to enhance task diversity for domain-specific post-training.
**(3) Task Evaluation**: We conduct experiments in two domains, biomedicine and food, by post-training MLLMs of different sources and scales (e.g., Qwen2-VL-2B, LLaVA-v1.6-8B, Llama-3.2-11B), and then evaluating MLLM performance on various domain-specific tasks.
<p align='left'>
<img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/-Jp7pAsCR2Tj4WwfwsbCo.png" width="600">
</p>
## How to use
```python
from datasets import load_dataset
# Choose the task name from the list of available tasks
task_name = 'FoodSeg103' # Options: 'Food101', 'FoodSeg103', 'Nutrition5K', 'Recipe1M'
# Load the dataset for the chosen task
data = load_dataset('AdaptLLM/food-VQA-benchmark', task_name, split='test')
```
## Citation
If you find our work helpful, please cite us.
AdaMLLM
```bibtex
@article{adamllm,
title={On Domain-Specific Post-Training for Multimodal Large Language Models},
author={Cheng, Daixuan and Huang, Shaohan and Zhu, Ziyu and Zhang, Xintong and Zhao, Wayne Xin and Luan, Zhongzhi and Dai, Bo and Zhang, Zhenliang},
journal={arXiv preprint arXiv:2411.19930},
year={2024}
}
```
[AdaptLLM](https://huggingface.co/papers/2309.09530) (ICLR 2024)
```bibtex
@inproceedings{
adaptllm,
title={Adapting Large Language Models via Reading Comprehension},
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=y886UXPEZ0}
}
```
|