File size: 8,989 Bytes
bf0f69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
---
annotations_creators:
- machine-generated
language_creators:
- machine-generated
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- multi-class-classification
paperswithcode_id: emotion
pretty_name: Emotion
tags:
- emotion-classification
dataset_info:
- config_name: split
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': sadness
          '1': joy
          '2': love
          '3': anger
          '4': fear
          '5': surprise
  splits:
  - name: train
    num_bytes: 1968209
    num_examples: 16000
  - name: validation
    num_bytes: 247888
    num_examples: 2000
  - name: test
    num_bytes: 244379
    num_examples: 2000
  download_size: 740883
  dataset_size: 2173481
- config_name: unsplit
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': sadness
          '1': joy
          '2': love
          '3': anger
          '4': fear
          '5': surprise
  splits:
  - name: train
    num_bytes: 10792185
    num_examples: 89754
  download_size: 10792185
  dataset_size: 10792185
train-eval-index:
- config: default
  task: text-classification
  task_id: multi_class_classification
  splits:
    train_split: train
    eval_split: test
  col_mapping:
    text: text
    label: target
  metrics:
  - type: accuracy
    name: Accuracy
  - type: f1
    name: F1 macro
    args:
      average: macro
  - type: f1
    name: F1 micro
    args:
      average: micro
  - type: f1
    name: F1 weighted
    args:
      average: weighted
  - type: precision
    name: Precision macro
    args:
      average: macro
  - type: precision
    name: Precision micro
    args:
      average: micro
  - type: precision
    name: Precision weighted
    args:
      average: weighted
  - type: recall
    name: Recall macro
    args:
      average: macro
  - type: recall
    name: Recall micro
    args:
      average: micro
  - type: recall
    name: Recall weighted
    args:
      average: weighted
---

# Dataset Card for "emotion"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [https://github.com/AdamCodd/emotion-dataset](https://github.com/AdamCodd/emotion-dataset)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 10.54 MB

### Dataset Summary

Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.

### Supported Tasks and Leaderboards

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Languages

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Dataset Structure

### Data Instances

An example looks as follows.
```
{
  "text": "im feeling quite sad and sorry for myself but ill snap out of it soon",
  "label": 0
}
```

### Data Fields

The data fields are:
- `text`: a `string` feature.
- `label`: a classification label, with possible values including `sadness` (0), `joy` (1), `love` (2), `anger` (3), `fear` (4), `surprise` (5).

### Data Splits

The dataset has 2 configurations:
- split: with a total of 20_000 examples split into train, validation and split
- unsplit: with a total of 89_754 examples in a single train split

| name    |  train | validation | test |
|---------|-------:|-----------:|-----:|
| split   |  16000 |       2000 | 2000 |
| unsplit |  89754 |        n/a |  n/a |

## Dataset Creation

### Curation Rationale

This dataset is designed for training machine learning models to perform emotion analysis. It contains text samples from Twitter labeled with six different emotions: sadness, joy, love, anger, fear, and surprise. The dataset is balanced, meaning that it has an equal number of samples for each label.

This dataset is originally sourced from [dair-ai's emotion dataset](https://huggingface.co/datasets/dair-ai/emotion), but the initial dataset was unbalanced and had some duplicate samples. Thus, this dataset has been deduplicated and balanced to ensure an equal number of samples for each emotion label.

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

The dataset should be used for educational and research purposes only.

### Citation Information

 If you use this dataset, please cite:
```
@inproceedings{saravia-etal-2018-carer,
    title = "{CARER}: Contextualized Affect Representations for Emotion Recognition",
    author = "Saravia, Elvis  and
      Liu, Hsien-Chi Toby  and
      Huang, Yen-Hao  and
      Wu, Junlin  and
      Chen, Yi-Shin",
    booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
    month = oct # "-" # nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/D18-1404",
    doi = "10.18653/v1/D18-1404",
    pages = "3687--3697",
    abstract = "Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.",
}
```