File size: 6,223 Bytes
c385d9f
 
 
 
 
 
 
365472f
c385d9f
365472f
b6e6f8b
c385d9f
 
 
 
 
 
 
 
319952a
c385d9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73b922d
 
 
c385d9f
 
 
 
 
 
73b922d
c385d9f
73b922d
 
 
c385d9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f5b577
c385d9f
 
 
 
 
 
 
 
 
 
 
 
 
0f5b577
c385d9f
 
 
 
 
 
 
 
 
0f5b577
c385d9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
pretty_name: VIVOS
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
- expert-generated
language:
- vi
license:
- cc-by-nc-sa-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- automatic-speech-recognition
task_ids: []
---

# Dataset Card for VIVOS

## Table of Contents
- [Dataset Card for VIVOS](#dataset-card-for-vivos)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)
  - [Dataset Creation](#dataset-creation)
    - [Curation Rationale](#curation-rationale)
    - [Source Data](#source-data)
      - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
      - [Who are the source language producers?](#who-are-the-source-language-producers)
    - [Annotations](#annotations)
      - [Annotation process](#annotation-process)
      - [Who are the annotators?](#who-are-the-annotators)
    - [Personal and Sensitive Information](#personal-and-sensitive-information)
  - [Considerations for Using the Data](#considerations-for-using-the-data)
    - [Social Impact of Dataset](#social-impact-of-dataset)
    - [Discussion of Biases](#discussion-of-biases)
    - [Other Known Limitations](#other-known-limitations)
  - [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)
    - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://ailab.hcmus.edu.vn/vivos
- **Repository:** [Needs More Information]
- **Paper:** [A non-expert Kaldi recipe for Vietnamese Speech Recognition System](https://ailab.hcmus.edu.vn/assets/WLSI3_2016_Luong_non_expert.pdf)
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [AILAB](mailto:ailab@hcmus.edu.vn)

### Dataset Summary

VIVOS is a free Vietnamese speech corpus consisting of 15 hours of recording speech prepared for Vietnamese Automatic Speech Recognition task.

The corpus was prepared by AILAB, a computer science lab of VNUHCM - University of Science, with Prof. Vu Hai Quan is the head of.

We publish this corpus in hope to attract more scientists to solve Vietnamese speech recognition problems.

### Supported Tasks and Leaderboards

[Needs More Information]

### Languages

Vietnamese

## Dataset Structure

### Data Instances

A typical data point comprises the path to the audio file, called `path` and its transcription, called `sentence`. Some additional information about the speaker and the passage which contains the transcription is provided.

```
{'speaker_id': 'VIVOSSPK01',
 'path': '/home/admin/.cache/huggingface/datasets/downloads/extracted/b7ded9969e09942ab65313e691e6fc2e12066192ee8527e21d634aca128afbe2/vivos/train/waves/VIVOSSPK01/VIVOSSPK01_R001.wav',
 'audio': {'path': '/home/admin/.cache/huggingface/datasets/downloads/extracted/b7ded9969e09942ab65313e691e6fc2e12066192ee8527e21d634aca128afbe2/vivos/train/waves/VIVOSSPK01/VIVOSSPK01_R001.wav',
		   'array': array([-0.00048828, -0.00018311, -0.00137329, ...,  0.00079346, 0.00091553,  0.00085449], dtype=float32),
		   'sampling_rate': 16000},
 'sentence': 'KHÁCH SẠN'}
```

### Data Fields

- speaker_id: An id for which speaker (voice) made the recording

- path: The path to the audio file

- audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.

- sentence: The sentence the user was prompted to speak

### Data Splits

The speech material has been subdivided into portions for train and test.

Speech was recorded in a quiet environment with high quality microphone, speakers were asked to read one sentence at a time.

|                  | Train | Test  |
| ---------------- | ----- | ----- |
| Speakers         | 46    | 19    | 
| Utterances       | 11660 | 760   |
| Duration         | 14:55 | 00:45 |
| Unique Syllables | 4617  | 1692  |

## Dataset Creation

### Curation Rationale

[Needs More Information]

### Source Data

#### Initial Data Collection and Normalization

[Needs More Information]

#### Who are the source language producers?

[Needs More Information]

### Annotations

#### Annotation process

[Needs More Information]

#### Who are the annotators?

[Needs More Information]

### Personal and Sensitive Information

The dataset consists of people who have donated their voice online.  You agree to not attempt to determine the identity of speakers in this dataset.

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed] 

### Other Known Limitations

Dataset provided for research purposes only. Please check dataset license for additional information. 

## Additional Information

### Dataset Curators

The dataset was initially prepared by AILAB, a computer science lab of VNUHCM - University of Science.

### Licensing Information

Public Domain, Creative Commons Attribution NonCommercial ShareAlike v4.0 ([CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode))

### Citation Information

```
@InProceedings{vivos:2016,
Address = {Ho Chi Minh, Vietnam}
title = {VIVOS: 15 hours of recording speech prepared for Vietnamese Automatic Speech Recognition},
author={Prof. Vu Hai Quan},
year={2016}
}
```

### Contributions

Thanks to [@binh234](https://github.com/binh234) for adding this dataset.