File size: 7,580 Bytes
a0d9759 d5333b8 de7f72c 8a1a19e 1b469e8 8a1a19e bef61de 1b469e8 d5333b8 de7f72c d5333b8 de7f72c d5333b8 de7f72c d5333b8 de7f72c d5333b8 de7f72c d5333b8 de7f72c d5333b8 de7f72c d5333b8 de7f72c d5333b8 de7f72c d5333b8 de7f72c d5333b8 de7f72c d5333b8 2fa7223 d5333b8 2fa7223 de7f72c 2fa7223 de7f72c 2fa7223 de7f72c d5333b8 de7f72c 2fa7223 d5333b8 2fa7223 de7f72c 2fa7223 de7f72c 2fa7223 de7f72c d5333b8 2fa7223 de7f72c d5333b8 de7f72c d5333b8 de7f72c d5333b8 de7f72c d5333b8 2fa7223 de7f72c 2fa7223 de7f72c 2fa7223 de7f72c 2fa7223 de7f72c 2fa7223 de7f72c 2fa7223 d5333b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
---
license: mit
---
# Quakeflow_NC
## Introduction
This dataset is part of the data (1970-2020) from [NCEDC (Northern California Earthquake Data Center)](https://ncedc.org/index.html) and is organized as several HDF5 files. The dataset structure is shown below, and you can find more information about the format at [AI4EPS](https://ai4eps.github.io/homepage/ml4earth/seismic_event_format1/))
Cite the NCEDC and PhaseNet:
Zhu, W., & Beroza, G. C. (2018). PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method. arXiv preprint arXiv:1803.03211.
NCEDC (2014), Northern California Earthquake Data Center. UC Berkeley Seismological Laboratory. Dataset. doi:10.7932/NCEDC.
Acknowledge the NCEDC:
Waveform data, metadata, or data products for this study were accessed through the Northern California Earthquake Data Center (NCEDC), doi:10.7932/NCEDC.
```
Group: / len:16227
|- Group: /nc71111584 len:2
| |-* begin_time = 2020-01-02T07:01:19.620
| |-* depth_km = 3.69
| |-* end_time = 2020-01-02T07:03:19.620
| |-* event_id = nc71111584
| |-* event_time = 2020-01-02T07:01:48.240
| |-* event_time_index = 2862
| |-* latitude = 37.6545
| |-* longitude = -118.8798
| |-* magnitude = -0.15
| |-* magnitude_type = D
| |-* num_stations = 2
| |- Dataset: /nc71111584/NC.MCB..HH (shape:(3, 12000))
| | |- (dtype=float32)
| | | |-* azimuth = 233.0
| | | |-* component = ['E' 'N' 'Z']
| | | |-* distance_km = 1.9
| | | |-* dt_s = 0.01
| | | |-* elevation_m = 2391.0
| | | |-* emergence_angle = 159.0
| | | |-* event_id = ['nc71111584' 'nc71111584']
| | | |-* latitude = 37.6444
| | | |-* location =
| | | |-* longitude = -118.8968
| | | |-* network = NC
| | | |-* phase_index = [3000 3101]
| | | |-* phase_polarity = ['U' 'N']
| | | |-* phase_remark = ['IP' 'ES']
| | | |-* phase_score = [1 2]
| | | |-* phase_time = ['2020-01-02T07:01:49.620' '2020-01-02T07:01:50.630']
| | | |-* phase_type = ['P' 'S']
| | | |-* snr = [2.82143 3.055604 1.8412642]
| | | |-* station = MCB
| | | |-* unit = 1e-6m/s
| |- Dataset: /nc71111584/NC.MCB..HN (shape:(3, 12000))
| | |- (dtype=float32)
| | | |-* azimuth = 233.0
| | | |-* component = ['E' 'N' 'Z']
......
```
## How to use
### Requirements
- datasets
- h5py
- fsspec
- torch (for PyTorch)
### Usage
Import the necessary packages:
```python
import h5py
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset, DataLoader
from datasets import load_dataset
```
We have 6 configurations for the dataset:
- "station"
- "event"
- "station_train"
- "event_train"
- "station_test"
- "event_test"
"station" yields station-based samples one by one, while "event" yields event-based samples one by one. The configurations with no suffix are the full dataset, while the configurations with suffix "_train" and "_test" only have corresponding split of the full dataset. Train split contains data from 1970 to 2019, while test split contains data in 2020.
The sample of `station` is a dictionary with the following keys:
- `data`: the waveform with shape `(3, nt)`, the default time length is 8192
- `phase_pick`: the probability of the phase pick with shape `(3, nt)`, the first dimension is noise, P and S
- `event_location`: the event location with shape `(4,)`, including latitude, longitude, depth and time
- `station_location`: the station location with shape `(3,)`, including latitude, longitude and depth
The sample of `event` is a dictionary with the following keys:
- `data`: the waveform with shape `(n_station, 3, nt)`, the default time length is 8192
- `phase_pick`: the probability of the phase pick with shape `(n_station, 3, nt)`, the first dimension is noise, P and S
- `event_center`: the probability of the event time with shape `(n_station, feature_nt)`, default feature time length is 512
- `event_location`: the space-time coordinates of the event with shape `(n_staion, 4, feature_nt)`
- `event_location_mask`: the probability mask of the event time with shape `(n_station, feature_nt)`
- `station_location`: the space coordinates of the station with shape `(n_station, 3)`, including latitude, longitude and depth
The default configuration is `station_test`. You can specify the configuration by argument `name`. For example:
```python
# load dataset
# ATTENTION: Streaming(Iterable Dataset) is difficult to support because of the feature of HDF5
# So we recommend to directly load the dataset and convert it into iterable later
# The dataset is very large, so you need to wait for some time at the first time
# to load "station_test" with test split
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", split="test")
# or
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="station_test", split="test")
# to load "event" with train split
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="event", split="train")
```
#### Usage for `station`
Then you can change the dataset into PyTorch format iterable dataset, and view the first sample:
```python
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="station_test", split="test")
# for PyTorch DataLoader, we need to divide the dataset into several shards
num_workers=4
quakeflow_nc = quakeflow_nc.to_iterable_dataset(num_shards=num_workers)
# because add examples formatting to get tensors when using the "torch" format
# has not been implemented yet, we need to manually add the formatting when using iterable dataset
# if you want to use dataset directly, just use
# quakeflow_nc.with_format("torch")
quakeflow_nc = quakeflow_nc.map(lambda x: {key: torch.from_numpy(np.array(value, dtype=np.float32)) for key, value in x.items()})
try:
isinstance(quakeflow_nc, torch.utils.data.IterableDataset)
except:
raise Exception("quakeflow_nc is not an IterableDataset")
# print the first sample of the iterable dataset
for example in quakeflow_nc:
print("\nIterable test\n")
print(example.keys())
for key in example.keys():
print(key, example[key].shape, example[key].dtype)
break
dataloader = DataLoader(quakeflow_nc, batch_size=4, num_workers=num_workers)
for batch in dataloader:
print("\nDataloader test\n")
print(batch.keys())
for key in batch.keys():
print(key, batch[key].shape, batch[key].dtype)
break
```
#### Usage for `event`
Then you can change the dataset into PyTorch format dataset, and view the first sample (Don't forget to reorder the keys):
```python
quakeflow_nc = datasets.load_dataset("AI4EPS/quakeflow_nc", split="test", name="event_test")
# for PyTorch DataLoader, we need to divide the dataset into several shards
num_workers=4
quakeflow_nc = quakeflow_nc.to_iterable_dataset(num_shards=num_workers)
quakeflow_nc = quakeflow_nc.map(lambda x: {key: torch.from_numpy(np.array(value, dtype=np.float32)) for key, value in x.items()})
try:
isinstance(quakeflow_nc, torch.utils.data.IterableDataset)
except:
raise Exception("quakeflow_nc is not an IterableDataset")
# print the first sample of the iterable dataset
for example in quakeflow_nc:
print("\nIterable test\n")
print(example.keys())
for key in example.keys():
print(key, example[key].shape, example[key].dtype)
break
dataloader = DataLoader(quakeflow_nc, batch_size=1, num_workers=num_workers)
for batch in dataloader:
print("\nDataloader test\n")
print(batch.keys())
for key in batch.keys():
print(key, batch[key].shape, batch[key].dtype)
break
``` |