File size: 5,755 Bytes
088662b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# -----------------------------------------------------------------------------
# Author: Jiawei Liu
# Date: 2025-10-29
# -----------------------------------------------------------------------------
import json
import re
from pathlib import Path

from rapidfuzz import fuzz


def clean_text(text: str):
    text = re.sub(
        r"\nAvailable online at.+?\.\s\s$", "", text, flags=re.DOTALL | re.MULTILINE
    )
    return text


def extract_problems(markdown_text: str):
    problems = {}

    # 1. Find the block of text containing the problems
    # Block starts with '## Problems'
    # and ends before '## \(S 1\) Solutions to Day 1'
    problems_section = re.search(
        r"^## Problems\s*$(.*?)^##.*Solutions to Day 1",
        markdown_text,
        re.DOTALL | re.MULTILINE,
    )

    if not problems_section:
        print("  - Not found '## Problems' section.")
        return problems

    problems_block = problems_section.group(1)

    # 2. Split the block into individual problems
    # Each problem starts with a number followed by a dot and space (e.g., '1. ')
    matchs = list(re.finditer(r"^(\d+)\.\s+", problems_block, flags=re.MULTILINE))

    # Split the text into parts using the problem numbers as delimiters
    for i, m in enumerate(matchs):
        problem_label = m.group(1)
        problem = problems_block[
            m.end() : matchs[i + 1].start()
            if i + 1 < len(matchs)
            else len(problems_block)
        ]

        problems[problem_label] = (problem.strip(), m.group())

    print(f"  - Extracted {len(problems)} problems.")

    return problems


def extract_solutions(markdown_text):
    solutions = {}

    # 1. Find the block of text containing the solutions
    # Block starts with '## \(S 1\) Solutions to Day 1' and end of document
    solutions_section = re.search(
        r"^##.*?Solutions to Day 1\s*$(.*)",
        markdown_text,
        re.DOTALL | re.MULTILINE,
    )

    if not solutions_section:
        print("  - Not found Solutions section.")
        return solutions

    solutions_block = solutions_section.group(1)

    ## \(\S 1.1\) IMO 2005/1, proposed by Bogdan Enescu (ROU)
    # 2. Split the block into individual solutions
    matchs = list(
        re.finditer(r"^##.*?IMO\s\d+\/(\d+).*?\n$", solutions_block, flags=re.MULTILINE)
    )

    # Split the text into parts using the solution numbers as delimiters
    for i, m in enumerate(matchs):
        problem_label = m.group(1)
        solution = solutions_block[
            m.end() : matchs[i + 1].start()
            if i + 1 < len(matchs)
            else len(solutions_block)
        ]

        solutions[problem_label] = (solution.strip(), m.group())

    print(f"  - Extracted {len(solutions)} solutions.")

    return solutions


def join(problems: dict, solutions: dict):
    pairs = []

    for problem_label, (problem, p_match) in problems.items():
        solution, s_match = solutions.get(problem_label)

        # Clean solution by removing the part that overlaps with the problem statement
        problem_align = fuzz.partial_ratio_alignment(solution, problem)
        solution = solution.replace(
            solution[problem_align.src_start : problem_align.src_end], ""
        )
        solution = re.sub(
            r"^\s*## Problem statement", "", solution, flags=re.IGNORECASE
        ).strip()

        if not solution:
            print(f"  - Warning: No solution found for problem {problem_label}.")
        pairs.append((problem, solution, problem_label, p_match, s_match))

    return pairs


def write_pairs(output_file: Path, pairs: list, year: str, project_root: Path):
    output_jsonl_text = ""
    for problem, solution, problem_label, p_match, s_match in pairs:
        output_jsonl_text += (
            json.dumps(
                {
                    "year": year,
                    "tier": "T0",
                    "problem_label": problem_label,
                    "problem_type": None,
                    "exam": "IMO",
                    "problem": problem,
                    "solution": solution,
                    "metadata": {
                        "resource_path": output_file.relative_to(
                            project_root
                        ).as_posix(),
                        "problem_match": p_match,
                        "solution_match": s_match,
                    },
                },
                ensure_ascii=False,
            )
            + "\n"
        )

    output_file.write_text(output_jsonl_text, encoding="utf-8")


if __name__ == "__main__":
    compet_base_path = Path(__file__).resolve().parent.parent
    compet_md_path = compet_base_path / "md"
    seg_output_path = compet_base_path / "segmented"
    project_root = compet_base_path.parent

    num_problems = 0
    num_solutions = 0

    for md_file in list(compet_md_path.glob("**/*notes.md")):
        print(f"Processing {md_file}...")
        output_file = seg_output_path / md_file.relative_to(compet_md_path).with_suffix(
            ".jsonl"
        )
        output_file.parent.mkdir(parents=True, exist_ok=True)

        # Read the markdown file
        markdown_text = "\n" + md_file.read_text(encoding="utf-8")
        markdown_text = clean_text(markdown_text)

        problems = extract_problems(markdown_text)
        solutions = extract_solutions(markdown_text)

        num_problems += len(problems)
        num_solutions += len(solutions)

        pairs = join(problems, solutions)

        year = re.search(r"\d{4}", output_file.stem).group()

        write_pairs(output_file, pairs, year, project_root)

        print()

    print(f"Total problems extracted: {num_problems}")
    print(f"Total solutions extracted: {num_solutions}")