File size: 8,763 Bytes
3314190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Modified by Shangchen Zhou from: https://github.com/TencentARC/GFPGAN/blob/master/inference_gfpgan.py
import os
import cv2
import argparse
import glob
import torch
from torchvision.transforms.functional import normalize
from basicsr.utils import imwrite, img2tensor, tensor2img
from basicsr.utils.download_util import load_file_from_url
from facelib.utils.face_restoration_helper import FaceRestoreHelper
import torch.nn.functional as F

from basicsr.utils.registry import ARCH_REGISTRY

pretrain_model_url = {
    'restoration': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
}

def set_realesrgan():
    if not torch.cuda.is_available():  # CPU
        import warnings
        warnings.warn('The unoptimized RealESRGAN is slow on CPU. We do not use it. '
                        'If you really want to use it, please modify the corresponding codes.',
                        category=RuntimeWarning)
        bg_upsampler = None
    else:
        from basicsr.archs.rrdbnet_arch import RRDBNet
        from basicsr.utils.realesrgan_utils import RealESRGANer
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
        bg_upsampler = RealESRGANer(
            scale=2,
            model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
            model=model,
            tile=args.bg_tile,
            tile_pad=40,
            pre_pad=0,
            half=True)  # need to set False in CPU mode
    return bg_upsampler

if __name__ == '__main__':
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    parser = argparse.ArgumentParser()

    parser.add_argument('--w', type=float, default=0.5, help='Balance the quality and fidelity')
    parser.add_argument('--upscale', type=int, default=2, help='The final upsampling scale of the image. Default: 2')
    parser.add_argument('--test_path', type=str, default='./inputs/cropped_faces')
    parser.add_argument('--has_aligned', action='store_true', help='Input are cropped and aligned faces')
    parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face')
    # large det_model: 'YOLOv5l', 'retinaface_resnet50'
    # small det_model: 'YOLOv5n', 'retinaface_mobile0.25'
    parser.add_argument('--detection_model', type=str, default='retinaface_resnet50')
    parser.add_argument('--draw_box', action='store_true')
    parser.add_argument('--bg_upsampler', type=str, default='None', help='background upsampler. Optional: realesrgan')
    parser.add_argument('--face_upsample', action='store_true', help='face upsampler after enhancement.')
    parser.add_argument('--bg_tile', type=int, default=400, help='Tile size for background sampler. Default: 400')

    args = parser.parse_args()

    # ------------------------ input & output ------------------------
    if args.test_path.endswith('/'):  # solve when path ends with /
        args.test_path = args.test_path[:-1]

    w = args.w
    result_root = f'results/{os.path.basename(args.test_path)}_{w}'

    # ------------------ set up background upsampler ------------------
    if args.bg_upsampler == 'realesrgan':
        bg_upsampler = set_realesrgan()
    else:
        bg_upsampler = None

    # ------------------ set up face upsampler ------------------
    if args.face_upsample:
        if bg_upsampler is not None:
            face_upsampler = bg_upsampler
        else:
            face_upsampler = set_realesrgan()
    else:
        face_upsampler = None

    # ------------------ set up CodeFormer restorer -------------------
    net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, 
                                            connect_list=['32', '64', '128', '256']).to(device)
    
    # ckpt_path = 'weights/CodeFormer/codeformer.pth'
    ckpt_path = load_file_from_url(url=pretrain_model_url['restoration'], 
                                    model_dir='weights/CodeFormer', progress=True, file_name=None)
    checkpoint = torch.load(ckpt_path)['params_ema']
    net.load_state_dict(checkpoint)
    net.eval()

    # ------------------ set up FaceRestoreHelper -------------------
    # large det_model: 'YOLOv5l', 'retinaface_resnet50'
    # small det_model: 'YOLOv5n', 'retinaface_mobile0.25'
    if not args.has_aligned: 
        print(f'Face detection model: {args.detection_model}')
    if bg_upsampler is not None: 
        print(f'Background upsampling: True, Face upsampling: {args.face_upsample}')
    else:
        print(f'Background upsampling: False, Face upsampling: {args.face_upsample}')

    face_helper = FaceRestoreHelper(
        args.upscale,
        face_size=512,
        crop_ratio=(1, 1),
        det_model = args.detection_model,
        save_ext='png',
        use_parse=True,
        device=device)

    # -------------------- start to processing ---------------------
    # scan all the jpg and png images
    for img_path in sorted(glob.glob(os.path.join(args.test_path, '*.[jp][pn]g'))):
        # clean all the intermediate results to process the next image
        face_helper.clean_all()
        
        img_name = os.path.basename(img_path)
        print(f'Processing: {img_name}')
        basename, ext = os.path.splitext(img_name)
        img = cv2.imread(img_path, cv2.IMREAD_COLOR)

        if args.has_aligned: 
            # the input faces are already cropped and aligned
            img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
            face_helper.cropped_faces = [img]
        else:
            face_helper.read_image(img)
            # get face landmarks for each face
            num_det_faces = face_helper.get_face_landmarks_5(
                only_center_face=args.only_center_face, resize=640, eye_dist_threshold=5)
            print(f'\tdetect {num_det_faces} faces')
            # align and warp each face
            face_helper.align_warp_face()

        # face restoration for each cropped face
        for idx, cropped_face in enumerate(face_helper.cropped_faces):
            # prepare data
            cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
            normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
            cropped_face_t = cropped_face_t.unsqueeze(0).to(device)

            try:
                with torch.no_grad():
                    output = net(cropped_face_t, w=w, adain=True)[0]
                    restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
                del output
                torch.cuda.empty_cache()
            except Exception as error:
                print(f'\tFailed inference for CodeFormer: {error}')
                restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))

            restored_face = restored_face.astype('uint8')
            face_helper.add_restored_face(restored_face)

        # paste_back
        if not args.has_aligned:
            # upsample the background
            if bg_upsampler is not None:
                # Now only support RealESRGAN for upsampling background
                bg_img = bg_upsampler.enhance(img, outscale=args.upscale)[0]
            else:
                bg_img = None
            face_helper.get_inverse_affine(None)
            # paste each restored face to the input image
            if args.face_upsample and face_upsampler is not None: 
                restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box, face_upsampler=face_upsampler)
            else:
                restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box)

        # save faces
        for idx, (cropped_face, restored_face) in enumerate(zip(face_helper.cropped_faces, face_helper.restored_faces)):
            # save cropped face
            if not args.has_aligned: 
                save_crop_path = os.path.join(result_root, 'cropped_faces', f'{basename}_{idx:02d}.png')
                imwrite(cropped_face, save_crop_path)
            # save restored face
            if args.has_aligned:
                save_face_name = f'{basename}.png'
            else:
                save_face_name = f'{basename}_{idx:02d}.png'
            save_restore_path = os.path.join(result_root, 'restored_faces', save_face_name)
            imwrite(restored_face, save_restore_path)

        # save restored img
        if not args.has_aligned and restored_img is not None:
            save_restore_path = os.path.join(result_root, 'final_results', f'{basename}.png')
            imwrite(restored_img, save_restore_path)

    print(f'\nAll results are saved in {result_root}')