jmonas's picture
Update README.md
96118c0 verified
---
license: apache-2.0
pretty_name: 1X World Model Challenge Dataset
size_categories:
- 10M<n<100M
viewer: false
---
# 1X World Model Compression Challenge Dataset
This repository hosts the dataset for the [1X World Model Compression Challenge](https://huggingface.co/spaces/1x-technologies/1X_World_Model_Challenge_Compression).
```bash
huggingface-cli download 1x-technologies/worldmodel --repo-type dataset --local-dir data
```
## Updates Since v1.1
- **Train/Val v2.0 (~100 hours)**, replacing v1.1
- **Test v2.0 dataset for the Compression Challenge**
- **Faces blurred** for privacy
- **New raw video dataset** (CC-BY-NC-SA 4.0) at [worldmodel_raw_data](https://huggingface.co/datasets/1x-technologies/worldmodel_raw_data)
- **Example scripts** now split into:
- `cosmos_video_decoder.py` — for decoding Cosmos Tokenized bins
- `unpack_data_test.py` — for reading the new test set
- `unpack_data_train_val.py` — for reading the train/val sets
---
## Train & Val v2.0
### Format
Each split is sharded:
- `video_{shard}.bin` — [NVIDIA Cosmos Tokenizer](https://github.com/NVIDIA/Cosmos-Tokenizer) discrete DV8×8×8 tokens at 30 Hz
- `segment_idx_{shard}.bin` — segment boundaries
- `states_{shard}.bin``np.float32` states (see below)
- `metadata.json` / `metadata_{shard}.json` — overall vs. per‐shard metadata
---
## Test v2.0
We provide a 450 sample **test_v2.0** dataset for the [World Model Compression Challenge](https://huggingface.co/spaces/1x-technologies/1X_World_Model_Challenge_Compression) with a similar structure (`video_{shard}.bin`, `states_{shard}.bin`). Use:
- `unpack_data_test.py` to read the test set
- `unpack_data_train_val.py` to read train/val
---
### State Index Definition (New)
```
0: HIP_YAW
1: HIP_ROLL
2: HIP_PITCH
3: KNEE_PITCH
4: ANKLE_ROLL
5: ANKLE_PITCH
6: LEFT_SHOULDER_PITCH
7: LEFT_SHOULDER_ROLL
8: LEFT_SHOULDER_YAW
9: LEFT_ELBOW_PITCH
10: LEFT_ELBOW_YAW
11: LEFT_WRIST_PITCH
12: LEFT_WRIST_ROLL
13: RIGHT_SHOULDER_PITCH
14: RIGHT_SHOULDER_ROLL
15: RIGHT_SHOULDER_YAW
16: RIGHT_ELBOW_PITCH
17: RIGHT_ELBOW_YAW
18: RIGHT_WRIST_PITCH
19: RIGHT_WRIST_ROLL
20: NECK_PITCH
21: Left hand closure (0= open, 1= closed)
22: Right hand closure (0= open, 1= closed)
23: Linear Velocity
24: Angular Velocity
```
## Previous v1.1
- `video.bin` — 16×16 patches at 30Hz, quantized
- `segment_ids.bin` — segment boundaries
- `actions/` folder storing multiple `.bin`s for states, closures, etc.
### v1.1 Joint Index
```
{
0: HIP_YAW
1: HIP_ROLL
2: HIP_PITCH
3: KNEE_PITCH
4: ANKLE_ROLL
5: ANKLE_PITCH
6: LEFT_SHOULDER_PITCH
7: LEFT_SHOULDER_ROLL
8: LEFT_SHOULDER_YAW
9: LEFT_ELBOW_PITCH
10: LEFT_ELBOW_YAW
11: LEFT_WRIST_PITCH
12: LEFT_WRIST_ROLL
13: RIGHT_SHOULDER_PITCH
14: RIGHT_SHOULDER_ROLL
15: RIGHT_SHOULDER_YAW
16: RIGHT_ELBOW_PITCH
17: RIGHT_ELBOW_YAW
18: RIGHT_WRIST_PITCH
19: RIGHT_WRIST_ROLL
20: NECK_PITCH
}
A separate `val_v1.1` set is available.
---
## Provided Checkpoints
- `magvit2.ckpt` from [MAGVIT2](https://github.com/TencentARC/Open-MAGVIT2) used in v1.1
- For v2.0, see [NVIDIA Cosmos Tokenizer](https://github.com/NVIDIA/Cosmos-Tokenizer); we supply `cosmos_video_decoder.py`.
---
## Directory Structure Example
```
train_v1.1/
val_v1.1/
train_v2.0/
val_v2.0/
test_v2.0/
├── video_{shard}.bin
├── states_{shard}.bin
├── ...
├── metadata_{shard}.json
cosmos_video_decoder.py
unpack_data_test.py
unpack_data_train_val.py
```
**License**: [Apache-2.0](./LICENSE)
**Author**: 1X Technologies
```