File size: 20,494 Bytes
aabceb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:28050
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: What helps an insectivorous plant attract and digest insects?
  sentences:
  - This investigation examined the accuracy of several generalizable anthropometric
    (ANTHRO) and bioelectrical impedance (BIA) regression equations to estimate %
    body fat (%BF) in women with either upper body (UB) or lower body (LB) fat distribution
    patterns.
  - Bacteria can also be chemotrophs. Chemosynthetic bacteria, or chemotrophs , obtain
    energy by breaking down chemical compounds in their environment. An example of
    one of these chemicals broken down by bacteria is nitrogen-containing ammonia.
    These bacteria are important because they help cycle nitrogen through the environment
    for other living things to use. Nitrogen cannot be made by living organisms, so
    it must be continually recycled. Organisms need nitrogen to make organic compounds,
    such as DNA.
  - Insectivorous Plants An insectivorous plant has specialized leaves to attract
    and digest insects. The Venus flytrap is popularly known for its insectivorous
    mode of nutrition, and has leaves that work as traps (Figure 31.16). The minerals
    it obtains from prey compensate for those lacking in the boggy (low pH) soil of
    its native North Carolina coastal plains. There are three sensitive hairs in the
    center of each half of each leaf. The edges of each leaf are covered with long
    spines. Nectar secreted by the plant attracts flies to the leaf. When a fly touches
    the sensory hairs, the leaf immediately closes. Next, fluids and enzymes break
    down the prey and minerals are absorbed by the leaf. Since this plant is popular
    in the horticultural trade, it is threatened in its original habitat.
- source_sentence: When carbon atoms are not bonded to as many hydrogen atoms as possible,
    what kind of hydrocarbon results?
  sentences:
  - Unsaturated hydrocarbons have at least one double or triple bond between carbon
    atoms, so the carbon atoms are not bonded to as many hydrogen atoms as possible.
    In other words, they are unsaturated with hydrogen atoms.
  - Endoscopic radiofrequency ablation (RFA) is a promising new treatment of Barrett's
    esophagus (BE). Adjunctive intra-esophageal pH control with proton pump inhibitors
    and/or anti-reflux surgery is generally recommended to optimize squamous re-epithelialization
    after ablation.
  - The cell wall is located outside the cell membrane. It consists mainly of cellulose
    and may also contain lignin, which makes it more rigid. The cell wall shapes,
    supports, and protects the cell. It prevents the cell from absorbing too much
    water and bursting. It also keeps large, damaging molecules out of the cell.
- source_sentence: Do comparison of ambulance dispatch protocols for nontraumatic
    abdominal pain?
  sentences:
  - KIOM-79, a combination of four plant extracts, has a preventive effect on diabetic
    nephropathy and retinopathy in diabetic animal models. In this study, we have
    investigated the inhibitory effects of KIOM-79 on diabetic cataractogenesis.
  - To compare rates of undertriage and overtriage of six ambulance dispatch protocols
    for the presenting complaint of nontraumatic abdominal pain, and to identify the
    optimal protocol.
  - a flower is a source of nectar
- source_sentence: Does altered fractalkine cleavage potentially promote local inflammation
    in NOD salivary gland?
  sentences:
  - In France, when physicians in ambulances take care of patients, they report medical
    status to the dispatch centre. Then the dispatching physician search for the available
    and appropriate hospital service to agree in directly receiving the patient. We
    attempted to evaluate this direct admission dispatch, in a urban area, with many
    health care facilities.
  - Despite the high prevalence of cannabis use in schizophrenia, few studies have
    examined the potential relationship between cannabis exposure and brain structural
    abnormalities in schizophrenia.
  - In the nonobese diabetic (NOD) mouse model of Sjögren's syndrome, lymphocytic
    infiltration is preceded by an accumulation of dendritic cells in the submandibular
    glands (SMGs). NOD mice also exhibit an increased frequency of mature, fractalkine
    receptor (CX3C chemokine receptor [CX3CR]1) expressing monocytes, which are considered
    to be precursors for tissue dendritic cells. To unravel further the role played
    by fractalkine-CX3CR1 interactions in the salivary gland inflammation, we studied
    the expression of fractalkine in NOD SMGs.
- source_sentence: The smallest cyclic ether is called what?
  sentences:
  - Most human traits have more complex modes of inheritance than simple Mendelian
    inheritance. For example, the traits may be controlled by multiple alleles or
    multiple genes.
  - Neonatal stress impairs postnatal bone mineralization. Evidence suggests that
    mechanical tactile stimulation (MTS) in early life decreases stress hormones and
    improves bone mineralization. Insulin-like growth factor (IGF1) is impacted by
    stress and essential to bone development. We hypothesized that MTS administered
    during neonatal stress would improve bone phenotype in later life. We also predicted
    an increase in bone specific mRNA expression of IGF1 related pathways.
  - The smallest cyclic ether is called an epoxide. Draw its structure.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---

# SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("danthepol/mcqa_embedder_v2")
# Run inference
sentences = [
    'The smallest cyclic ether is called what?',
    'The smallest cyclic ether is called an epoxide. Draw its structure.',
    'Neonatal stress impairs postnatal bone mineralization. Evidence suggests that mechanical tactile stimulation (MTS) in early life decreases stress hormones and improves bone mineralization. Insulin-like growth factor (IGF1) is impacted by stress and essential to bone development. We hypothesized that MTS administered during neonatal stress would improve bone phenotype in later life. We also predicted an increase in bone specific mRNA expression of IGF1 related pathways.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 28,050 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                        | sentence_1                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 6 tokens</li><li>mean: 23.02 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 81.53 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                   | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
  |:-------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Ectotherms undergo a variety of changes at the cellular level to acclimatize to shifts in what?</code> | <code>There are 44 autosomes and 2 sex chromosomes in the human genome, for a total of 46 chromosomes (23 pairs). Sex chromosomes specify an organism's genetic sex. Humans can have two different sex chromosomes, one called X and the other Y. Normal females possess two X chromosomes and normal males one X and one Y. An autosome is any chromosome other than a sex chromosome. The Figure below shows a representation of the 24 different human chromosomes. Figure below shows a karyotype of the human genome. A karyotype depicts, usually in a photograph, the chromosomal complement of an individual, including the number of chromosomes and any large chromosomal abnormalities. Karyotypes use chromosomes from the metaphase stage of mitosis.</code>                                           |
  | <code>All polar compounds contain what type of bonds?</code>                                                 | <code>Polar compounds, such as water, are compounds that have a partial negative charge on one side of each molecule and a partial positive charge on the other side. All polar compounds contain polar bonds (although not all compounds that contain polar bonds are polar. ) In a polar bond, two atoms share electrons unequally. One atom attracts the shared electrons more strongly, so it has a partial negative charge. The other atom attracts the shared electrons less strongly, so it is has a partial positive charge. In a water molecule, the oxygen atom attracts the shared electrons more strongly than the hydrogen atoms do. This explains why the oxygen side of the water molecule has a partial negative charge and the hydrogen side of the molecule has a partial positive charge.</code> |
  | <code>Do lateral cephalometric radiograph for the planning of maxillary implant reconstruction?</code>       | <code>To present a simple and objective method for the planning of maxillary implant reconstruction with autogenous bone graft in maxilla atrophy.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step | Training Loss |
|:------:|:----:|:-------------:|
| 0.5701 | 500  | 0.064         |
| 1.1403 | 1000 | 0.0455        |
| 1.7104 | 1500 | 0.0254        |
| 2.2805 | 2000 | 0.0189        |
| 2.8506 | 2500 | 0.0155        |


### Framework Versions
- Python: 3.12.8
- Sentence Transformers: 3.4.1
- Transformers: 4.51.3
- PyTorch: 2.3.0+cu121
- Accelerate: 1.3.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->