File size: 13,741 Bytes
55c8c5e |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7dd8990d9360>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dd8990d93f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dd8990d9480>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dd8990d9510>", "_build": "<function ActorCriticPolicy._build at 0x7dd8990d95a0>", "forward": "<function ActorCriticPolicy.forward at 0x7dd8990d9630>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dd8990d96c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dd8990d9750>", "_predict": "<function ActorCriticPolicy._predict at 0x7dd8990d97e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dd8990d9870>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dd8990d9900>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dd8990d9990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dd89927ee40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716893444969231178, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAID8A73yU08/QEA2PXq/7r4Yfg+9IIfdPQAAAAAAAAAAABKUvO4X6j1eFsa9vsejvqYgKru1vTm9AAAAAAAAAADgPc6+8XRXP+MSoL4/2KK+Lw4Nv/UqNL4AAAAAAAAAAGb4KTzhzpe6czTfOqSHmjUmbf461gcBugAAgD8AAIA/E8kYPgg26z5JObq9gEOrvtvQMz4dNPO9AAAAAAAAAADNCZA830haPspBbj0b4YK+2B3NPWYDWj0AAAAAAAAAAH2NXb7yDJ0/5HgBv7YWsr7B6N2+hhCMvgAAAAAAAAAAmvmfOylgXLp70QA0wWFzMHRxRzp1SayzAACAPwAAgD8zN787Gad0PtYzwr1m2nO+gnGMPKtwTz0AAAAAAAAAADOV6zw1Plw/JyXFPY3B8b668Iw8k0uJPQAAAAAAAAAAWqekvdCruD9aVw+/12pQvSF/Mb3nOpO+AAAAAAAAAACzAF09XK96ulbiJ7jCJGSzZRL2OvrPQjcAAIA/AACAP+YoIL6h1ao9YrvHPauAob5IIqY9k1OlOQAAAAAAAAAADbSUPcNRO7oWxRM6aRoWNQxPDLpMNS+5AACAPwAAAACa/3O9ZKa3PWPoJz5MWMK+Hl4SPg4T3b0AAAAAAAAAAOZJsr2Pul66x5o2umV4d7ZNDgU7AOxoOQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHH5MvVVghOMAWyUS/mMAXSUR0CaohliSaE0dX2UKGgGR0Byk7ldTo+waAdNOQFoCEdAmqKHmFJxvXV9lChoBkdAcZDRtP557mgHTVsBaAhHQJqjdXZGrjp1fZQoaAZHQHC9sFQl8gJoB00DAWgIR0Cao3mSyMUAdX2UKGgGR0Bx12RmseXBaAdNFQFoCEdAmqQc2FWXC3V9lChoBkdAcECWJ79hqmgHS/doCEdAmqQ1M23rlnV9lChoBkdAcX8hCdBjWmgHS9loCEdAmqTY/iYLLXV9lChoBkdAcSxUu+RHPWgHTZEBaAhHQJqk/kmx+rl1fZQoaAZHQHAPfppvgm9oB0vvaAhHQJqmO3Ytg8d1fZQoaAZHQG90JjMFEApoB0v5aAhHQJqmk22oegd1fZQoaAZHQHIECZF5OahoB00SAWgIR0CapvJSR8txdX2UKGgGR0BwLonH/95yaAdL9mgIR0Cap0dc0LtvdX2UKGgGR0BxlqhcqvvCaAdNJAFoCEdAmqjzhcZ9/nV9lChoBkdAcA3d30PH1mgHTQMBaAhHQJqpErXlKbt1fZQoaAZHQHKOzjvNNahoB00oAWgIR0CaqUmQbMoudX2UKGgGR0BjqbSG8EmqaAdN6ANoCEdAmqmkBOpKjHV9lChoBkdAb/gAWBSUDGgHTQkBaAhHQJqpsSTQmeF1fZQoaAZHQHA7jMJQcghoB0vdaAhHQJqqDtw71Zl1fZQoaAZHQG2/yv9tMwloB00HAWgIR0CaqoGA08/2dX2UKGgGR0ByMLm1YyO8aAdNCwFoCEdAmqta9K28ZnV9lChoBkdAcnAPRzBAOmgHTSoBaAhHQJqrbQqqfe11fZQoaAZHQHGlgr1/UfBoB0v6aAhHQJqruOPvKEF1fZQoaAZHQG+kJnYg7o1oB00hAWgIR0CarJJfICEIdX2UKGgGR0ByA1PEbYK6aAdL8WgIR0CarP5TqB3BdX2UKGgGR0Bt0bYVZcLSaAdL5mgIR0CarQoNd7fIdX2UKGgGR0BxuHurp7kXaAdL0WgIR0CarycL0BfbdX2UKGgGR0BwrNSn+AEuaAdNEQFoCEdAmrCFgDzRQnV9lChoBkdAcb8C0WuX/2gHTQQBaAhHQJqw1sabWmR1fZQoaAZHQG9pZeiSJTFoB0v4aAhHQJqw6RlpXZJ1fZQoaAZHQG3XECmuTzNoB00zAWgIR0CasXqlxffGdX2UKGgGR0Bwr88FINExaAdNQgFoCEdAmrJTWPLgXXV9lChoBkdAcPiA0Kqn32gHS/poCEdAmrKKMBIWg3V9lChoBkdAcmAs4T9KmWgHTSgBaAhHQJqy8+pwS8J1fZQoaAZHQHEuz+BH09RoB00XAWgIR0Cas3zvqkdndX2UKGgGR0By6oY64lQeaAdL92gIR0Cas+E2pAD8dX2UKGgGR0Bx6P8HfMwDaAdNzgFoCEdAmrRWGEf1YnV9lChoBkdAcfIkKu0TlGgHS/toCEdAmrR/Kp1ifHV9lChoBkdAcLJrM1TBImgHTQUBaAhHQJq0uN3np0R1fZQoaAZHQHHffNA1NxloB0vpaAhHQJq2Kx7iQ1d1fZQoaAZHQFFkyiVSn+BoB0vHaAhHQJq3XdtVJcx1fZQoaAZHQG8QmRNh3JRoB0vuaAhHQJq3qABkqc51fZQoaAZHQFEJfPomoitoB0uraAhHQJq3+/XXiBJ1fZQoaAZHQHLqoxHoX9BoB0vxaAhHQJq4HI+4b0h1fZQoaAZHQHC5451eSjhoB0vaaAhHQJq4wV0tAcF1fZQoaAZHQHE0IuK4x1xoB00MAWgIR0CauNiXpnpTdX2UKGgGR0BdyBGpda+waAdN6ANoCEdAmrkNLYf4h3V9lChoBkdAcaufk3juKGgHTa4CaAhHQJq5v8ejmCB1fZQoaAZHQHETjCcf/3poB0v8aAhHQJq54fPomol1fZQoaAZHQHIbYUN8VpNoB033AWgIR0Cauklo11nvdX2UKGgGR0BwuQK8cuJ2aAdL82gIR0CazpnaWX1KdX2UKGgGR0ByWNI9TxXoaAdL9mgIR0CazxRpDeCTdX2UKGgGR0BuRXumaYu1aAdNLgFoCEdAms/F1r6+FnV9lChoBkdAce88QI2OyWgHTQgBaAhHQJrP8a4tpVV1fZQoaAZHQHLYtVea8YhoB005AWgIR0Ca0PZ75VOsdX2UKGgGR0BxHuEi+tbLaAdL/WgIR0Ca0lm7aqS6dX2UKGgGR0Bw9ub+cYqHaAdL9GgIR0Ca0ogyuZCwdX2UKGgGR0BzcSkgwGnoaAdNAAFoCEdAmtLBhDw6Q3V9lChoBkdAciyO4G2TgWgHTSIBaAhHQJrTKgFotcx1fZQoaAZHQHGK62BreqJoB0v2aAhHQJrTf1vl2eR1fZQoaAZHQHEEUTQE6ktoB00AAWgIR0Ca05VB2OhkdX2UKGgGR0BwdlZ0Syt3aAdL72gIR0Ca1CoXbdrPdX2UKGgGR0BwZxdhRZU2aAdNfQFoCEdAmtSbs0HhTHV9lChoBkdAcKD72L5yl2gHTQ0BaAhHQJrWBw++ueV1fZQoaAZHQHPky1eBxxVoB00lAWgIR0Ca1iCJGe+VdX2UKGgGR0Bup4p6QeV+aAdNBAFoCEdAmtZM2m51/3V9lChoBkdAcdoIu5BkZ2gHTRoBaAhHQJrXpZdOZb91fZQoaAZHQG8BXuVopQVoB00tAWgIR0Ca2HAp8WsSdX2UKGgGR0BzC582Jiy6aAdNCAFoCEdAmtiLPD50sHV9lChoBkdAcoJIWP91l2gHS/xoCEdAmtnI1He7+XV9lChoBkdAcBfZzPrv9mgHS/BoCEdAmtoa4+bExnV9lChoBkdAbksueSSvDGgHTSgBaAhHQJrbAz9CNS91fZQoaAZHQHC1I0IkZ75oB00iAWgIR0Ca3ETBqKxcdX2UKGgGR0BwABwQ176YaAdNBAFoCEdAmtyCv9tMwnV9lChoBkdAcPOT/hl182gHTRMBaAhHQJrex30PH1h1fZQoaAZHQG6ETho/RmdoB01XAWgIR0Ca3tsbNr0rdX2UKGgGR0BwlUvsZ5zHaAdNIQFoCEdAmt9hUNrj53V9lChoBkdAcMJ6K+BYm2gHTRwBaAhHQJrfb8GcFyJ1fZQoaAZHQG5azvAoG6hoB00NAWgIR0Ca4WDa4+bFdX2UKGgGR0BxYmSKWLP2aAdL5mgIR0Ca4ZcTJyQxdX2UKGgGR0Bw4gIiTt9haAdNzQJoCEdAmuIDDsMRYnV9lChoBkdAcwtFgUlAvGgHTUIBaAhHQJriT06HTJB1fZQoaAZHQHEG95Y5ksloB00qAWgIR0Ca4m71ZkkKdX2UKGgGR0By2quEEkjYaAdL+mgIR0Ca4om78Nx3dX2UKGgGR0Byz1TER8MNaAdN6QJoCEdAmuPhdMTN+3V9lChoBkdAcBGylN1yNmgHS+NoCEdAmuPxDG96C3V9lChoBkdAb3S+fRNRFmgHTRwBaAhHQJrkVgOSW7h1fZQoaAZHQHGl/ShJyyVoB00hAWgIR0Ca5XIAfdRBdX2UKGgGR0BwYXvrnkksaAdL9mgIR0Ca5kPvKEFodX2UKGgGR0BxBW5VfeDWaAdNEwFoCEdAmucuN1hb4nV9lChoBkdAc1bjafzz3GgHTRwBaAhHQJrn5eE7GNt1fZQoaAZHQHHlgKOT7l9oB02eAmgIR0Ca6AArxy4ndX2UKGgGR0BvQxhQWN3oaAdNIwFoCEdAmuginpB5X3V9lChoBkdAcCpLq2SdOWgHS+1oCEdAmuhvikwevXV9lChoBkdAbkWyAQQL/mgHS/5oCEdAmui3ctXgcnV9lChoBkdAb3jHc1wYL2gHS/ZoCEdAmul1Y6nzhHV9lChoBkdAcaXtCiRGMGgHTRgBaAhHQJrqS+6Ae7t1fZQoaAZHQHG7/0EovzxoB00sAWgIR0Ca6rj0L+gldX2UKGgGR0Bygq14Pf8/aAdNPAFoCEdAmurmFBY3enV9lChoBkdAcmdZA6dUbWgHTQ4BaAhHQJrrcKw6hg51fZQoaAZHQG41kCvHLidoB0vraAhHQJrr/vw3HaN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |