File size: 3,068 Bytes
3aeb4c6 7b1ce13 3aeb4c6 7b1ce13 3aeb4c6 7b1ce13 3aeb4c6 7b1ce13 3aeb4c6 7b1ce13 3aeb4c6 7b1ce13 3aeb4c6 d35b737 3aeb4c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
# Model Card for [HIV_BERT]
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Summary](#model-summary)
- [Model Description](#model-description)
- [Intended Uses & Limitations](#intended-uses-&-limitations)
- [How to Use](#how-to-use)
- [Training Data](#training-data)
- [Training Procedure](#training-procedure)
- [Preprocessing](#preprocessing)
- [Training](#training)
- [Evaluation Results](#evaluation-results)
- [BibTeX Entry and Citation Info](#bibtex-entry-and-citation-info)
## Summary
[The HIV-BERT model was trained as a refinement of the ProtBert-BFD model (https://huggingface.co/Rostlab/prot_bert_bfd) for HIV centric tasks. It was refined with whole viral genomes from the Los Alamos HIV Sequence Database (https://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html). This pretraining is important for HIV related tasks as the original BFD database contains few viral proteins making it sub-optimal when used as the basis for transfer learning tasks. This model and other related HIV prediction tasks have been published (link).]
## Model Description
[Like the original ProtBert-BFD model, this model encodes each amino acid as an individual token. This model was trained using Masked Language Modeling: a process in which a random set of tokens are masked with the model trained on their prediction. This model was trained using the damlab/hiv_flt dataset with 256 amino acid chunks and a 15% mask rate.]
## Intended Uses & Limitations
[As a masked language model this tool can be used to predict expected mutations using a masking approach. This could be used to identify highly mutated sequences, sequencing artifacts, or other contexts. As a BERT model, this tool can also be used as the base for transfer learning. This pretrained model could be used as the base when developing HIV-specific classification tasks.]
## How to use
[Code snippet of AutoModelForMaskedLM prediction of V3 amino acids.]
## Training Data
[The dataset damlab/HIV_FLT was used to refine the original rostlab/Prot-bert-bfd. This dataset contains 1790 full HIV genomes from across the globe. When translated, these genomes contain approximately 3.9 million amino-acid tokens.]
## Training Procedure
### Preprocessing
[As with the rostlab/Prot-bert-bfd model, the rare amino acids U, Z, O, and B were converted to X and spaces were added between each amino acid. All strings were concatenated and chunked into 256 token chunks for training. A random 20% of chunks were held for validation.]
### Training
[Training was performed with the HuggingFace training module using the MaskedLM data loader with a 15% masking rate. The learning rate was set at E-5, 50K warm-up steps, and a cosine_with_restarts learning rate schedule and continued until 3 consecutive epochs did not improve the loss on the held-out dataset.]
## Evaluation Results
[Table of Prot-Bert and HIV-Bert loss on HIV sequence datasets]
## BibTeX Entry and Citation Info
[More Information Needed]
---
license: mit
--- |