File size: 2,557 Bytes
da78d5e c7fee42 da78d5e c7fee42 da78d5e c7fee42 e6cd8b2 c7fee42 e6cd8b2 c7fee42 e6cd8b2 da78d5e c7fee42 da78d5e c7fee42 e6cd8b2 da78d5e c7fee42 da78d5e c7fee42 da78d5e c7fee42 da78d5e c7fee42 da78d5e c7fee42 da78d5e c7fee42 de71577 c2f0630 3ee7a5a bb6ee2f 0b03846 aeb4bcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
language: en
tags:
- text-classification
pipeline_tag: text-classification
widget:
- text: GEPS Techno is the pioneer of hybridization of renewable energies at sea.
We imagine, design and commercialize innovative off-grid systems that aim to generate
power at sea, stabilize and collect data. The success of our low power platforms
WAVEPEAL enabled us to scale-up the device up to WAVEGEM, the 150-kW capacity
platform.
---
## Environmental Impact (CODE CARBON DEFAULT)
| Metric | Value |
|--------------------------|---------------------------------|
| Duration (in seconds) | 70782.1638636589 |
| Emissions (Co2eq in kg) | 0.0428313743077283 |
| CPU power (W) | 42.5 |
| GPU power (W) | [No GPU] |
| RAM power (W) | 3.75 |
| CPU energy (kWh) | 0.8356209404538092 |
| GPU energy (kWh) | [No GPU] |
| RAM energy (kWh) | 0.0737307571264605 |
| Consumed energy (kWh) | 0.9093516975802703 |
| Country name | Switzerland |
| Cloud provider | nan |
| Cloud region | nan |
| CPU count | 2 |
| CPU model | Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz |
| GPU count | nan |
| GPU model | nan |
## Environmental Impact (for one core)
| Metric | Value |
|--------------------------|---------------------------------|
| CPU energy (kWh) | 0.1362556654375434 |
| Emissions (Co2eq in kg) | 0.02772301417993307 |
## Note
19 juin 2024
## My Config
| Config | Value |
|--------------------------|-----------------|
| checkpoint | albert-base-v2 |
| model_name | ft_32_15e6_base_x8 |
| sequence_length | 400 |
| num_epoch | 6 |
| learning_rate | 1.5e-05 |
| batch_size | 32 |
| weight_decay | 0.0 |
| warm_up_prop | 0.0 |
| drop_out_prob | 0.1 |
| packing_length | 100 |
| train_test_split | 0.2 |
| num_steps | 29328 |
## Training and Testing steps
Epoch | Train Loss | Test Loss | F-beta Score
---|---|---|---
| 0 | 0.000000 | 0.721794 | 0.555497 |
| 1 | 0.338023 | 0.236548 | 0.905157 |
| 2 | 0.204050 | 0.226602 | 0.903291 |
| 3 | 0.158461 | 0.240485 | 0.931850 |
| 4 | 0.116072 | 0.285530 | 0.903037 |
| 5 | 0.077379 | 0.331275 | 0.902012 |
| 6 | 0.052431 | 0.371383 | 0.917452 |
|