led-base-ilc / README.md
d0r1h's picture
Update README.md
6a62f6e
|
raw
history blame
2.1 kB
---
license: apache-2.0
datasets: ilc
tags:
- summarization
---
# Longformer Encoder-Decoder (LED) fine-tuned on ILC
This model is a fine-tuned version of [led-base-16384](https://huggingface.co/allenai/led-base-16384) on the [ILC](https://huggingface.co/datasets/d0r1h/ILC) dataset.
As described in [Longformer: The Long-Document Transformer](https://arxiv.org/pdf/2004.05150.pdf) by Iz Beltagy, Matthew E. Peters, Arman Cohan, *led-base-16384* was initialized from [*bart-base*](https://huggingface.co/facebook/bart-base) since both models share the exact same architecture. To be able to process 16K tokens, *bart-base*'s position embedding matrix was simply copied 16 times.
```Python
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
device = "cuda" if torch.cuda.is_available() else "CPU"
checkpoint = "d0r1h/led-base-ilc"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, return_dict_in_generate=True).to(device)
case = "......."
input_ids = tokenizer(case, return_tensors="pt").input_ids.to(device)
global_attention_mask = torch.zeros_like(input_ids)
global_attention_mask[:, 0] = 1
sequences = model.generate(input_ids,
global_attention_mask=global_attention_mask).sequences
summary = tokenizer.batch_decode(sequences,
skip_special_tokens=True)
```
## Evaluation results
When the model is used for summarizing ILC documents(10 samples), it achieves the following results:
| Model | rouge1-f | rouge1-p | rouge2-f | rouge2-p | rougeL-f | rougeL-p |
|:-----------:|:-----:|:-----:|:------:|:-----:|:------:|:-----:|
| led-base-ilc | **42** | **47** | **22** | **24** | **39** | **44** |
| led-base | 3 | 39 | 1 | 21 | 3 | 37 |
[This notebook](https://colab.research.google.com/github/d0r1h/Notebooks/blob/main/NLP/Summarization/led_base_ilc_summarization.ipynb) shows how *led* can effectively be used for downstream tasks such as summarization.