led-base-ilc / README.md
d0r1h's picture
Update README.md
6a62f6e
|
raw
history blame
2.1 kB
metadata
license: apache-2.0
datasets: ilc
tags:
  - summarization

Longformer Encoder-Decoder (LED) fine-tuned on ILC

This model is a fine-tuned version of led-base-16384 on the ILC dataset.

As described in Longformer: The Long-Document Transformer by Iz Beltagy, Matthew E. Peters, Arman Cohan, led-base-16384 was initialized from bart-base since both models share the exact same architecture. To be able to process 16K tokens, bart-base's position embedding matrix was simply copied 16 times.


from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
device = "cuda" if torch.cuda.is_available() else "CPU"

checkpoint = "d0r1h/led-base-ilc"

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, return_dict_in_generate=True).to(device)
case = "......."
input_ids = tokenizer(case, return_tensors="pt").input_ids.to(device)
global_attention_mask = torch.zeros_like(input_ids)
global_attention_mask[:, 0] = 1
sequences = model.generate(input_ids, 
                           global_attention_mask=global_attention_mask).sequences
summary = tokenizer.batch_decode(sequences, 
                                 skip_special_tokens=True)
                                 

Evaluation results

When the model is used for summarizing ILC documents(10 samples), it achieves the following results:

Model rouge1-f rouge1-p rouge2-f rouge2-p rougeL-f rougeL-p
led-base-ilc 42 47 22 24 39 44
led-base 3 39 1 21 3 37

This notebook shows how led can effectively be used for downstream tasks such as summarization.