heruberuto's picture
Librarian Bot: Update dataset YAML metadata for model (#1)
bc90a67
|
raw
history blame
2.42 kB
---
datasets: ctu-aic/csfever
---
('---\ndatasets:\n- ctu-aic/csfever\nlanguages:\n- cs\nlicense: cc-by-sa-4.0\ntags:\n- natural-language-inference\n\n---',)
# 🦾 xlm-roberta-large-xnli-csfever
Transformer model for **Natural Language Inference** in ['cs'] languages finetuned on ['ctu-aic/csfever'] datasets.
## 🧰 Usage
### πŸ‘Ύ Using UKPLab `sentence_transformers` `CrossEncoder`
The model was trained using the `CrossEncoder` API and we recommend it for its usage.
```python
from sentence_transformers.cross_encoder import CrossEncoder
model = CrossEncoder('ctu-aic/xlm-roberta-large-xnli-csfever')
scores = model.predict([["My first context.", "My first hypothesis."],
["Second context.", "Hypothesis."]])
```
### πŸ€— Using Huggingface `transformers`
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("ctu-aic/xlm-roberta-large-xnli-csfever")
tokenizer = AutoTokenizer.from_pretrained("ctu-aic/xlm-roberta-large-xnli-csfever")
```
## 🌳 Contributing
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
## πŸ‘¬ Authors
The model was trained and uploaded by **[ullriher](https://udb.fel.cvut.cz/?uid=ullriher&sn=&givenname=&_cmd=Hledat&_reqn=1&_type=user&setlang=en)** (e-mail: [ullriher@fel.cvut.cz](mailto:ullriher@fel.cvut.cz))
The code was codeveloped by the NLP team at Artificial Intelligence Center of CTU in Prague ([AIC](https://www.aic.fel.cvut.cz/)).
## πŸ” License
[cc-by-sa-4.0](https://choosealicense.com/licenses/cc-by-sa-4.0)
## πŸ’¬ Citation
If you find this repository helpful, feel free to cite our publication:
```
@article{DBLP:journals/corr/abs-2201-11115,
author = {Herbert Ullrich and
Jan Drchal and
Martin R{'{y}}par and
Hana Vincourov{'{a}} and
V{'{a}}clav Moravec},
title = {CsFEVER and CTKFacts: Acquiring Czech Data for Fact Verification},
journal = {CoRR},
volume = {abs/2201.11115},
year = {2022},
url = {https://arxiv.org/abs/2201.11115},
eprinttype = {arXiv},
eprint = {2201.11115},
timestamp = {Tue, 01 Feb 2022 14:59:01 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2201-11115.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```