File size: 6,102 Bytes
3532565 1646b7f 3532565 1646b7f 3532565 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
Conversion of https://huggingface.co/Qwen/Qwen2.5-14B-Instruct into the ```ctranslate2``` format using ```int8``` quantization.
NOTE #1: This requires a version of ```ctranslate2``` GREATER THAN 4.5.0.
NOTE #2: The sample scripts below require ```pip``` installing the necessary ```CUDA``` and ```CUDNN``` libraries. If you rely on a systemwide installation instead, adjust your code accordingly.
Requirements:
- torch 2.4.0+cu124
- nvidia-cublas-cu12 12.4.2.65
- nvidia-cuda-nvrtc-cu12 12.4.99
- nvidia-cuda-runtime-cu12 12.4.99
- nvidia-cudnn-cu12 9.1.0.70
- numpy==1.26.4 (YOU MUST DOWNGRADE FROM THE NUMPY VERSION THAT CTRANSLATE2 INSTALLS BY DEFAULT)
- All other traditional dependencies like ```transformers```, ```accelerate```, etc.
<details><summary>Sample Script #1 (non-streaming):</summary>
```Python
import sys
import os
os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'
from pathlib import Path
def set_cuda_paths():
venv_base = Path(sys.executable).parent.parent
nvidia_base_path = venv_base / 'Lib' / 'site-packages' / 'nvidia'
cuda_path = nvidia_base_path / 'cuda_runtime' / 'bin'
cublas_path = nvidia_base_path / 'cublas' / 'bin'
cudnn_path = nvidia_base_path / 'cudnn' / 'bin'
nvrtc_path = nvidia_base_path / 'cuda_nvrtc' / 'bin'
paths_to_add = [
str(cuda_path),
str(cublas_path),
str(cudnn_path),
str(nvrtc_path),
]
env_vars = ['CUDA_PATH', 'CUDA_PATH_V12_4', 'PATH']
for env_var in env_vars:
current_value = os.environ.get(env_var, '')
new_value = os.pathsep.join(paths_to_add + [current_value] if current_value else paths_to_add)
os.environ[env_var] = new_value
set_cuda_paths()
import ctranslate2
import gc
import torch
from transformers import AutoTokenizer
import pynvml
from constants import user_message, system_message
pynvml.nvmlInit()
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
model_dir = r"[INSERT PATH TO FOLDER CONTAINING THE MODEL FILES HERE]"
def build_prompt():
prompt = f"""<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{user_message}<|im_end|>
<|im_start|>assistant
"""
return prompt
def main():
model_name = os.path.basename(model_dir)
beam_size_value = 1
intra_threads = max(os.cpu_count() - 4, 4)
generator = ctranslate2.Generator(
model_dir,
device="cuda",
compute_type="int8",
intra_threads=intra_threads
)
tokenizer = AutoTokenizer.from_pretrained(model_dir, add_prefix_space=None)
prompt = build_prompt()
tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt))
results_batch = generator.generate_batch(
[tokens],
include_prompt_in_result=False,
max_batch_size=4096,
batch_type="tokens",
beam_size=beam_size_value,
num_hypotheses=1,
max_length=512,
sampling_temperature=0.0,
)
output = tokenizer.decode(results_batch[0].sequences_ids[0])
print("\nGenerated response:\n")
print(output)
del generator
del tokenizer
torch.cuda.empty_cache()
gc.collect()
if __name__ == "__main__":
main()
```
</details>
<details><summary>Sample Script #2 (streaming)</summary>
```Python
import sys
import os
os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'
from pathlib import Path
def set_cuda_paths():
venv_base = Path(sys.executable).parent.parent
nvidia_base_path = venv_base / 'Lib' / 'site-packages' / 'nvidia'
cuda_path = nvidia_base_path / 'cuda_runtime' / 'bin'
cublas_path = nvidia_base_path / 'cublas' / 'bin'
cudnn_path = nvidia_base_path / 'cudnn' / 'bin'
nvrtc_path = nvidia_base_path / 'cuda_nvrtc' / 'bin'
paths_to_add = [
str(cuda_path),
str(cublas_path),
str(cudnn_path),
str(nvrtc_path),
]
env_vars = ['CUDA_PATH', 'CUDA_PATH_V12_4', 'PATH']
for env_var in env_vars:
current_value = os.environ.get(env_var, '')
new_value = os.pathsep.join(paths_to_add + [current_value] if current_value else paths_to_add)
os.environ[env_var] = new_value
set_cuda_paths()
import ctranslate2
import gc
import torch
from transformers import AutoTokenizer
import pynvml
from constants import user_message, system_message
pynvml.nvmlInit()
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
model_dir = r"[PATH TO FOLDER CONTAINING THE MODEL FILES]"
def build_prompt():
prompt = f"""<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{user_message}<|im_end|>
<|im_start|>assistant
"""
return prompt
def main():
generator = ctranslate2.Generator(
model_dir,
device="cuda",
compute_type="int8",
)
tokenizer = AutoTokenizer.from_pretrained(model_dir)
prompt = build_prompt()
tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt))
# Initialize token iterator
token_iterator = generator.generate_tokens(
[tokens],
max_length=512,
sampling_temperature=0.0
)
decoded_output = ""
tokens_buffer = []
try:
for token_result in token_iterator:
token_id = token_result.token_id
token = tokenizer.convert_ids_to_tokens(token_id)
if token_id == tokenizer.eos_token_id:
break
is_new_word = token.startswith("Ġ")
if is_new_word and tokens_buffer:
word = tokenizer.decode(tokens_buffer)
print(word, end='', flush=True)
decoded_output += word
tokens_buffer = []
tokens_buffer.append(token_id)
if tokens_buffer:
word = tokenizer.decode(tokens_buffer)
print(word, end='', flush=True)
decoded_output += word
except KeyboardInterrupt:
print("\nGeneration interrupted")
del generator
del tokenizer
torch.cuda.empty_cache()
gc.collect()
if __name__ == "__main__":
main()
```
</details> |