Geneformer / geneformer /gene_classifier.py
Christina Theodoris
update cell classifier module
025e1b8
raw
history blame
31.7 kB
import os
import sys
GPU_NUMBER = [0] # CHANGE WITH MULTIGPU
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join([str(s) for s in GPU_NUMBER])
os.environ["NCCL_DEBUG"] = "INFO"
import ast
import datetime
import math
import pickle
import subprocess
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
from datasets import Dataset, load_from_disk
from sklearn import preprocessing
from sklearn.metrics import (
ConfusionMatrixDisplay,
accuracy_score,
auc,
confusion_matrix,
roc_auc_score,
roc_curve,
)
# imports
from sklearn.model_selection import StratifiedKFold, train_test_split
from tqdm.notebook import tqdm
from transformers import BertForTokenClassification, Trainer
from transformers.training_args import TrainingArguments
from geneformer import DataCollatorForGeneClassification, EmbExtractor
from geneformer.pretrainer import token_dictionary
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
from geneformer import TranscriptomeTokenizer
def vote(logit_pair):
a, b = logit_pair
if a > b:
return 0
elif b > a:
return 1
elif a == b:
return "tie"
def py_softmax(vector):
e = np.exp(vector)
return e / e.sum()
# Identifies cosine similarity between two embeddings. 0 is perfectly dissimilar and 1 is perfectly similar
def similarity(tensor1, tensor2, cosine=True):
if cosine == False:
if tensor1.ndimension() > 1:
tensor1 = tensor1.view(1, -1)
if tensor2.ndimension() > 1:
tensor2 = tensor2.view(1, -1)
dot_product = torch.matmul(tensor1, tensor2)
norm_tensor1 = torch.norm(tensor1)
norm_tensor2 = torch.norm(tensor2)
epsilon = 1e-8
similarity = dot_product / (norm_tensor1 * norm_tensor2 + epsilon)
similarity = (similarity.item() + 1) / 2
else:
if tensor1.shape != tensor2.shape:
raise ValueError("Input tensors must have the same shape.")
# Compute cosine similarity using PyTorch's dot product function
dot_product = torch.dot(tensor1, tensor2)
norm_tensor1 = torch.norm(tensor1)
norm_tensor2 = torch.norm(tensor2)
# Avoid division by zero by adding a small epsilon
epsilon = 1e-8
similarity = dot_product / (norm_tensor1 * norm_tensor2 + epsilon)
return similarity.item()
# Plots heatmap between different classes/labels
def plot_similarity_heatmap(similarities):
classes = list(similarities.keys())
classlen = len(classes)
arr = np.zeros((classlen, classlen))
for i, c in enumerate(classes):
for j, cc in enumerate(classes):
if cc == c:
val = 1.0
else:
val = similarities[c][cc]
arr[i][j] = val
plt.figure(figsize=(8, 6))
plt.imshow(arr, cmap="inferno", vmin=0, vmax=1)
plt.colorbar()
plt.xticks(np.arange(classlen), classes, rotation=45, ha="right")
plt.yticks(np.arange(classlen), classes)
plt.title("Similarity Heatmap")
plt.savefig("similarity_heatmap.png")
# get cross-validated mean and sd metrics
def get_cross_valid_metrics(all_tpr, all_roc_auc, all_tpr_wt):
wts = [count / sum(all_tpr_wt) for count in all_tpr_wt]
all_weighted_tpr = [a * b for a, b in zip(all_tpr, wts)]
mean_tpr = np.sum(all_weighted_tpr, axis=0)
mean_tpr[-1] = 1.0
all_weighted_roc_auc = [a * b for a, b in zip(all_roc_auc, wts)]
roc_auc = np.sum(all_weighted_roc_auc)
roc_auc_sd = math.sqrt(np.average((all_roc_auc - roc_auc) ** 2, weights=wts))
return mean_tpr, roc_auc, roc_auc_sd
def validate(
data,
targets,
labels,
nsplits,
subsample_size,
training_args,
freeze_layers,
output_dir,
num_proc,
num_labels,
pre_model,
):
# initiate eval metrics to return
num_classes = len(set(labels))
mean_fpr = np.linspace(0, 1, 100)
# create 80/20 train/eval splits
targets_train, targets_eval, labels_train, labels_eval = train_test_split(
targets, labels, test_size=0.25, shuffle=True
)
label_dict_train = dict(zip(targets_train, labels_train))
label_dict_eval = dict(zip(targets_eval, labels_eval))
# function to filter by whether contains train or eval labels
def if_contains_train_label(example):
a = label_dict_train.keys()
b = example["input_ids"]
return not set(a).isdisjoint(b)
def if_contains_eval_label(example):
a = label_dict_eval.keys()
b = example["input_ids"]
return not set(a).isdisjoint(b)
# filter dataset for examples containing classes for this split
print(f"Filtering training data")
trainset = data.filter(if_contains_train_label, num_proc=num_proc)
print(
f"Filtered {round((1-len(trainset)/len(data))*100)}%; {len(trainset)} remain\n"
)
print(f"Filtering evalation data")
evalset = data.filter(if_contains_eval_label, num_proc=num_proc)
print(f"Filtered {round((1-len(evalset)/len(data))*100)}%; {len(evalset)} remain\n")
# minimize to smaller training sample
training_size = min(subsample_size, len(trainset))
trainset_min = trainset.select([i for i in range(training_size)])
eval_size = min(training_size, len(evalset))
half_training_size = round(eval_size / 2)
evalset_train_min = evalset.select([i for i in range(half_training_size)])
evalset_oos_min = evalset.select([i for i in range(half_training_size, eval_size)])
# label conversion functions
def generate_train_labels(example):
example["labels"] = [
label_dict_train.get(token_id, -100) for token_id in example["input_ids"]
]
return example
def generate_eval_labels(example):
example["labels"] = [
label_dict_eval.get(token_id, -100) for token_id in example["input_ids"]
]
return example
# label datasets
print(f"Labeling training data")
trainset_labeled = trainset_min.map(generate_train_labels)
print(f"Labeling evaluation data")
evalset_train_labeled = evalset_train_min.map(generate_eval_labels)
print(f"Labeling evaluation OOS data")
evalset_oos_labeled = evalset_oos_min.map(generate_eval_labels)
# load model
model = BertForTokenClassification.from_pretrained(
pre_model,
num_labels=num_labels,
output_attentions=False,
output_hidden_states=False,
)
if freeze_layers is not None:
modules_to_freeze = model.bert.encoder.layer[:freeze_layers]
for module in modules_to_freeze:
for param in module.parameters():
param.requires_grad = False
model = model.to(device)
# add output directory to training args and initiate
training_args["output_dir"] = output_dir
training_args_init = TrainingArguments(**training_args)
# create the trainer
trainer = Trainer(
model=model,
args=training_args_init,
data_collator=DataCollatorForGeneClassification(),
train_dataset=trainset_labeled,
eval_dataset=evalset_train_labeled,
)
# train the gene classifier
trainer.train()
trainer.save_model(output_dir)
fpr, tpr, interp_tpr, conf_mat = classifier_predict(
trainer.model, evalset_oos_labeled, 200, mean_fpr
)
auc_score = auc(fpr, tpr)
return fpr, tpr, auc_score
# cross-validate gene classifier
def cross_validate(
data,
targets,
labels,
nsplits,
subsample_size,
training_args,
freeze_layers,
output_dir,
num_proc,
num_labels,
pre_model,
):
# check if output directory already written to
# ensure not overwriting previously saved model
model_dir_test = os.path.join(output_dir, "ksplit0/models/pytorch_model.bin")
# if os.path.isfile(model_dir_test) == True:
# raise Exception("Model already saved to this directory.")
device = device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# initiate eval metrics to return
num_classes = len(set(labels))
mean_fpr = np.linspace(0, 1, 100)
all_tpr = []
all_roc_auc = []
all_tpr_wt = []
label_dicts = []
confusion = np.zeros((num_classes, num_classes))
# set up cross-validation splits
skf = StratifiedKFold(n_splits=nsplits, random_state=0, shuffle=True)
# train and evaluate
iteration_num = 0
for train_index, eval_index in tqdm(skf.split(targets, labels)):
if len(labels) > 500:
print("early stopping activated due to large # of training examples")
if iteration_num == 3:
break
print(f"****** Crossval split: {iteration_num}/{nsplits-1} ******\n")
# generate cross-validation splits
targets_train, targets_eval = targets[train_index], targets[eval_index]
labels_train, labels_eval = labels[train_index], labels[eval_index]
label_dict_train = dict(zip(targets_train, labels_train))
label_dict_eval = dict(zip(targets_eval, labels_eval))
label_dicts += (
iteration_num,
targets_train,
targets_eval,
labels_train,
labels_eval,
)
# function to filter by whether contains train or eval labels
def if_contains_train_label(example):
a = label_dict_train.keys()
b = example["input_ids"]
return not set(a).isdisjoint(b)
def if_contains_eval_label(example):
a = label_dict_eval.keys()
b = example["input_ids"]
return not set(a).isdisjoint(b)
# filter dataset for examples containing classes for this split
print(f"Filtering training data")
trainset = data.filter(if_contains_train_label, num_proc=num_proc)
print(
f"Filtered {round((1-len(trainset)/len(data))*100)}%; {len(trainset)} remain\n"
)
print(f"Filtering evalation data")
evalset = data.filter(if_contains_eval_label, num_proc=num_proc)
print(
f"Filtered {round((1-len(evalset)/len(data))*100)}%; {len(evalset)} remain\n"
)
# minimize to smaller training sample
training_size = min(subsample_size, len(trainset))
trainset_min = trainset.select([i for i in range(training_size)])
eval_size = min(training_size, len(evalset))
half_training_size = round(eval_size / 2)
evalset_train_min = evalset.select([i for i in range(half_training_size)])
evalset_oos_min = evalset.select(
[i for i in range(half_training_size, eval_size)]
)
# label conversion functions
def generate_train_labels(example):
example["labels"] = [
label_dict_train.get(token_id, -100)
for token_id in example["input_ids"]
]
return example
def generate_eval_labels(example):
example["labels"] = [
label_dict_eval.get(token_id, -100) for token_id in example["input_ids"]
]
return example
# label datasets
print(f"Labeling training data")
trainset_labeled = trainset_min.map(generate_train_labels)
print(f"Labeling evaluation data")
evalset_train_labeled = evalset_train_min.map(generate_eval_labels)
print(f"Labeling evaluation OOS data")
evalset_oos_labeled = evalset_oos_min.map(generate_eval_labels)
# create output directories
ksplit_output_dir = os.path.join(output_dir, f"ksplit{iteration_num}")
ksplit_model_dir = os.path.join(ksplit_output_dir, "models/")
# ensure not overwriting previously saved model
model_output_file = os.path.join(ksplit_model_dir, "pytorch_model.bin")
# if os.path.isfile(model_output_file) == True:
# raise Exception("Model already saved to this directory.")
# make training and model output directories
subprocess.call(f"mkdir -p {ksplit_output_dir}", shell=True)
subprocess.call(f"mkdir -p {ksplit_model_dir}", shell=True)
# load model
model = BertForTokenClassification.from_pretrained(
pre_model,
num_labels=num_labels,
output_attentions=False,
output_hidden_states=False,
)
if freeze_layers is not None:
modules_to_freeze = model.bert.encoder.layer[:freeze_layers]
for module in modules_to_freeze:
for param in module.parameters():
param.requires_grad = False
model = model.to(device)
# add output directory to training args and initiate
training_args["output_dir"] = ksplit_output_dir
training_args_init = TrainingArguments(**training_args)
# create the trainer
trainer = Trainer(
model=model,
args=training_args_init,
data_collator=DataCollatorForGeneClassification(),
train_dataset=trainset_labeled,
eval_dataset=evalset_train_labeled,
)
# train the gene classifier
trainer.train()
# save model
trainer.save_model(ksplit_model_dir)
# evaluate model
fpr, tpr, interp_tpr, conf_mat = classifier_predict(
trainer.model, evalset_oos_labeled, 200, mean_fpr
)
# append to tpr and roc lists
confusion = confusion + conf_mat
all_tpr.append(interp_tpr)
all_roc_auc.append(auc(fpr, tpr))
# append number of eval examples by which to weight tpr in averaged graphs
all_tpr_wt.append(len(tpr))
iteration_num = iteration_num + 1
# get overall metrics for cross-validation
mean_tpr, roc_auc, roc_auc_sd = get_cross_valid_metrics(
all_tpr, all_roc_auc, all_tpr_wt
)
return all_roc_auc, roc_auc, roc_auc_sd, mean_fpr, mean_tpr, confusion, label_dicts
# Computes metrics
def compute_metrics(pred):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
# calculate accuracy and macro f1 using sklearn's function
acc = accuracy_score(labels, preds)
macro_f1 = f1_score(labels, preds, average="macro")
return {"accuracy": acc, "macro_f1": macro_f1}
# plot ROC curve
def plot_ROC(bundled_data, title):
plt.figure()
lw = 2
for roc_auc, roc_auc_sd, mean_fpr, mean_tpr, sample, color in bundled_data:
plt.plot(
mean_fpr,
mean_tpr,
color=color,
lw=lw,
label="{0} (AUC {1:0.2f} $\pm$ {2:0.2f})".format(
sample, roc_auc, roc_auc_sd
),
)
plt.plot([0, 1], [0, 1], color="black", lw=lw, linestyle="--")
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title(title)
plt.legend(loc="lower right")
plt.savefig("ROC.png")
return mean_fpr, mean_tpr, roc_auc
# plot confusion matrix
def plot_confusion_matrix(classes_list, conf_mat, title):
display_labels = []
i = 0
for label in classes_list:
display_labels += ["{0}\nn={1:.0f}".format(label, sum(conf_mat[:, i]))]
i = i + 1
display = ConfusionMatrixDisplay(
confusion_matrix=preprocessing.normalize(conf_mat, norm="l1"),
display_labels=display_labels,
)
display.plot(cmap="Blues", values_format=".2g")
plt.title(title)
plt.savefig("CM.png")
# Function to find the largest number smaller
# than or equal to N that is divisible by k
def find_largest_div(N, K):
rem = N % K
if rem == 0:
return N
else:
return N - rem
def preprocess_classifier_batch(cell_batch, max_len):
if max_len == None:
max_len = max([len(i) for i in cell_batch["input_ids"]])
def pad_label_example(example):
example["labels"] = np.pad(
example["labels"],
(0, max_len - len(example["input_ids"])),
mode="constant",
constant_values=-100,
)
example["input_ids"] = np.pad(
example["input_ids"],
(0, max_len - len(example["input_ids"])),
mode="constant",
constant_values=token_dictionary.get("<pad>"),
)
example["attention_mask"] = (
example["input_ids"] != token_dictionary.get("<pad>")
).astype(int)
return example
padded_batch = cell_batch.map(pad_label_example)
return padded_batch
# forward batch size is batch size for model inference (e.g. 200)
def classifier_predict(model, evalset, forward_batch_size, mean_fpr):
predict_logits = []
predict_labels = []
model.to("cpu")
model.eval()
# ensure there is at least 2 examples in each batch to avoid incorrect tensor dims
evalset_len = len(evalset)
max_divisible = find_largest_div(evalset_len, forward_batch_size)
if len(evalset) - max_divisible == 1:
evalset_len = max_divisible
max_evalset_len = max(evalset.select([i for i in range(evalset_len)])["length"])
for i in range(0, evalset_len, forward_batch_size):
max_range = min(i + forward_batch_size, evalset_len)
batch_evalset = evalset.select([i for i in range(i, max_range)])
padded_batch = preprocess_classifier_batch(batch_evalset, max_evalset_len)
padded_batch.set_format(type="torch")
input_data_batch = padded_batch["input_ids"]
attn_msk_batch = padded_batch["attention_mask"]
label_batch = padded_batch["labels"]
with torch.no_grad():
input_ids = input_data_batch
attn_mask = attn_msk_batch
labels = label_batch
outputs = model(
input_ids=input_ids, attention_mask=attn_mask, labels=labels
)
predict_logits += [torch.squeeze(outputs.logits.to("cpu"))]
predict_labels += [torch.squeeze(label_batch.to("cpu"))]
logits_by_cell = torch.cat(predict_logits)
all_logits = logits_by_cell.reshape(-1, logits_by_cell.shape[2])
labels_by_cell = torch.cat(predict_labels)
all_labels = torch.flatten(labels_by_cell)
logit_label_paired = [
item
for item in list(zip(all_logits.tolist(), all_labels.tolist()))
if item[1] != -100
]
y_pred = [vote(item[0]) for item in logit_label_paired]
y_true = [item[1] for item in logit_label_paired]
logits_list = [item[0] for item in logit_label_paired]
# probability of class 1
y_score = [py_softmax(item)[1] for item in logits_list]
conf_mat = confusion_matrix(y_true, y_pred)
fpr, tpr, _ = roc_curve(y_true, y_score)
# plot roc_curve for this split
plt.plot(fpr, tpr)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC")
plt.show()
# interpolate to graph
interp_tpr = np.interp(mean_fpr, fpr, tpr)
interp_tpr[0] = 0.0
return fpr, tpr, interp_tpr, conf_mat
def classify_genes(
gene_info="Genecorpus-30M/example_input_files/gene_info_table.csv",
genes="Genecorpus-30M/example_input_files/gene_classification/dosage_sensitive_tfs/dosage_sens_tf_labels.csv",
corpus_30M="Genecorpus-30M/genecorpus_30M_2048.dataset/",
model=".",
max_input_size=2**11,
max_lr=5e-5,
freeze_layers=4,
num_gpus=1,
num_proc=os.cpu_count(),
geneformer_batch_size=9,
epochs=1,
filter_dataset=50_000,
emb_extract=True,
emb_layer=0,
forward_batch=200,
filter_data=None,
inference=False,
k_validate=True,
model_location="230917_geneformer_GeneClassifier_dosageTF_L2048_B12_LR5e-05_LSlinear_WU500_E1_Oadamw_n10000_F4/",
skip_training=False,
emb_dir="gene_emb",
output_dir=None,
max_cells=1000,
num_cpus=os.cpu_count(),
):
""" "
Primary Parameters
-----------
gene_info: path
Path to gene mappings
corpus_30M: path
Path to 30M Gene Corpus
model: path
Path to pretrained GeneFormer model
genes: path
Path to csv file containing different columns of genes and the column labels
inference: bool
Whether the model should be used to run inference. If False, model will train with labeled data instead. Defaults to False
k_validate: bool
Whether the model should run k-fold validation or simply perform regular training/evaluate. Defaults to True
skip_training: bool
Whether the model should skip the training portion. Defaults to False
emb_extract: bool
WHether the model should extract embeddings for a given gene (WIP)
Customization Parameters
-----------
freeze_layers: int
Freezes x number of layers from the model. Default is 4 (2 non-frozen layers)
filter_dataset: int
Number of cells to filter from 30M dataset. Default is 50_000
emb_layer: int
What layer embeddings are extracted from. Default is 4
filter_data: str, list
Filters down embeddings to a single category. Default is None
"""
# table of corresponding Ensembl IDs, gene names, and gene types (e.g. coding, miRNA, etc.)
gene_info = pd.read_csv(gene_info, index_col=0)
labels = gene_info.columns
# create dictionaries for corresponding attributes
gene_id_type_dict = dict(zip(gene_info["ensembl_id"], gene_info["gene_type"]))
gene_name_id_dict = dict(zip(gene_info["gene_name"], gene_info["ensembl_id"]))
gene_id_name_dict = {v: k for k, v in gene_name_id_dict.items()}
# function for preparing targets and labels
def prep_inputs(label_store, id_type):
target_list = []
if id_type == "gene_name":
for key in list(label_store.keys()):
targets = [
gene_name_id_dict[gene]
for gene in label_store[key]
if gene_name_id_dict.get(gene) in token_dictionary
]
targets_id = [token_dictionary[gene] for gene in targets]
target_list.append(targets_id)
elif id_type == "ensembl_id":
for key in list(label_store.keys()):
targets = [
gene for gene in label_store[key] if gene in token_dictionary
]
targets_id = [token_dictionary[gene] for gene in targets]
target_list.append(targets_id)
targets, labels = [], []
for targ in target_list:
targets = targets + targ
targets = np.array(targets)
for num, targ in enumerate(target_list):
label = [num] * len(targ)
labels = labels + label
labels = np.array(labels)
unique_labels = num + 1
nsplits = min(5, min([len(targ) for targ in target_list]) - 1)
assert nsplits > 2
return targets, labels, nsplits, unique_labels
if skip_training == False:
# preparing targets and labels for dosage sensitive vs insensitive TFs
gene_classes = pd.read_csv(genes, header=0)
if filter_data == None:
labels = gene_classes.columns
else:
if isinstance(filter_data, list):
labels = filter_data
else:
labels = [filter_data]
label_store = {}
# Dictionary for decoding labels
decode = {i: labels[i] for i in range(len(labels))}
for label in labels:
label_store[label] = gene_classes[label].dropna()
targets, labels, nsplits, unique_labels = prep_inputs(label_store, "ensembl_id")
# load training dataset
train_dataset = load_from_disk(corpus_30M)
shuffled_train_dataset = train_dataset.shuffle(seed=42)
subsampled_train_dataset = shuffled_train_dataset.select(
[i for i in range(filter_dataset)]
)
lr_schedule_fn = "linear"
warmup_steps = 500
optimizer = "adamw"
subsample_size = 10_000
training_args = {
"learning_rate": max_lr,
"do_train": True,
"evaluation_strategy": "no",
"save_strategy": "epoch",
"logging_steps": 10,
"group_by_length": True,
"length_column_name": "length",
"disable_tqdm": False,
"lr_scheduler_type": lr_schedule_fn,
"warmup_steps": warmup_steps,
"weight_decay": 0.001,
"per_device_train_batch_size": geneformer_batch_size,
"per_device_eval_batch_size": geneformer_batch_size,
"num_train_epochs": epochs,
}
# define output directory path
current_date = datetime.datetime.now()
datestamp = f"{str(current_date.year)[-2:]}{current_date.month:02d}{current_date.day:02d}"
if output_dir == None:
training_output_dir = Path(
f"{datestamp}_geneformer_GeneClassifier_dosageTF_L{max_input_size}_B{geneformer_batch_size}_LR{max_lr}_LS{lr_schedule_fn}_WU{warmup_steps}_E{epochs}_O{optimizer}_n{subsample_size}_F{freeze_layers}/"
)
else:
training_output_dir = Path(output_dir)
# make output directory
subprocess.call(f"mkdir -p {training_output_dir}", shell=True)
# Places number of classes + in directory
num_classes = len(set(labels))
info_list = [num_classes, decode]
with open(training_output_dir / "classes.txt", "w") as f:
f.write(str(info_list))
subsampled_train_dataset.save_to_disk(output_dir / "dataset")
if k_validate == True:
ksplit_model = "ksplit0/models"
ksplit_model_test = os.path.join(training_output_dir, ksplit_model)
# if os.path.isfile(ksplit_model_test) == True:
# raise Exception("Model already saved to this directory.")
# cross-validate gene classifier
(
all_roc_auc,
roc_auc,
roc_auc_sd,
mean_fpr,
mean_tpr,
confusion,
label_dicts,
) = cross_validate(
subsampled_train_dataset,
targets,
labels,
nsplits,
subsample_size,
training_args,
freeze_layers,
training_output_dir,
1,
unique_labels,
model,
)
bundled_data = []
bundled_data += [
(roc_auc, roc_auc_sd, mean_fpr, mean_tpr, "Geneformer", "red")
]
graph_title = " ".join(
[
i + " vs" if count < len(label_store) - 1 else i
for count, i in enumerate(label_store)
]
)
fpr, tpr, auc = plot_ROC(
bundled_data, "Dosage Sensitive vs Insensitive TFs"
)
print(auc)
# plot confusion matrix
plot_confusion_matrix(label_store, confusion, "Geneformer")
else:
fpr, tpr, auc = validate(
subsampled_train_dataset,
targets,
labels,
nsplits,
subsample_size,
training_args,
freeze_layers,
training_output_dir,
1,
unique_labels,
model,
)
print(auc)
if inference == True:
# preparing targets and labels for dosage sensitive vs insensitive TFs
gene_classes = pd.read_csv(genes, header=0)
targets = []
for column in gene_classes.columns:
targets += list(gene_classes[column])
tokens = []
for target in targets:
try:
tokens.append(token_dictionary[target])
except:
tokens.append(0)
targets = torch.LongTensor([tokens])
with open(f"{model_location}classes.txt", "r") as f:
info_list = ast.literal_eval(f.read())
num_classes = info_list[0]
labels = info_list[1]
model = BertForTokenClassification.from_pretrained(
model_location,
num_labels=num_classes,
output_attentions=False,
output_hidden_states=False,
local_files_only=True,
)
if freeze_layers is not None:
modules_to_freeze = model.bert.encoder.layer[:freeze_layers]
for module in modules_to_freeze:
for param in module.parameters():
param.requires_grad = False
model = model.to(device)
# evaluate model
predictions = F.softmax(model(targets.to(device))["logits"], dim=-1).argmax(-1)[
0
]
predictions = [labels[int(pred)] for pred in predictions]
return predictions
# Extracts aggregate gene embeddings for each label
if emb_extract == True:
with open(f"{model_location}/classes.txt", "r") as f:
data = ast.literal_eval(f.read())
num_classes = data[0]
decode = data[1]
gene_classes = pd.read_csv(genes, header=0)
labels = gene_classes.columns
tokenize = TranscriptomeTokenizer()
label_dict = {}
for label in labels:
genes = gene_classes[label]
tokenized_genes = []
for gene in genes:
try:
tokenized_genes.append(tokenize.gene_token_dict[gene])
except:
continue
label_dict[label] = tokenized_genes
embex = EmbExtractor(
model_type="GeneClassifier",
num_classes=num_classes,
emb_mode="gene",
filter_data=None,
max_ncells=max_cells,
emb_layer=emb_layer,
emb_label=label_dict,
labels_to_plot=list(labels),
forward_batch_size=forward_batch,
nproc=num_cpus,
)
subprocess.call(f"mkdir -p {emb_dir}", shell=True)
embs = embex.extract_embs(
model_directory=model_location,
input_data_file=model_location / "dataset",
output_directory=emb_dir,
output_prefix=f"{label}_embbeddings",
)
emb_dict = {label: [] for label in list(set(labels))}
similarities = {key: {} for key in list(emb_dict.keys())}
for column in embs.columns:
remaining_cols = [k for k in embs.columns if k != column]
for k in remaining_cols:
embedding = torch.Tensor(embs[k])
sim = similarity(torch.Tensor(embs[column]), embedding, cosine=True)
similarities[column][k] = sim
plot_similarity_heatmap(similarities)
print(similarities)
return similarities
if __name__ == "__main__":
classify_genes(
k_validate=False,
inference=False,
skip_training=False,
emb_extract=True,
output_dir=Path("gene_emb"),
model_location=Path("gene_emb"),
epochs=5,
gene_info="../GeneFormer_repo/Genecorpus-30M/example_input_files/gene_info_table.csv",
genes="../GeneFormer_repo/Genecorpus-30M/example_input_files/gene_classification/dosage_sensitive_tfs/dosage_sens_tf_labels.csv",
corpus_30M="../GeneFormer_repo/Genecorpus-30M/genecorpus_30M_2048.dataset/",
)